labelme工具解析json文件

本文介绍如何处理使用labelme工具时遇到的json解析问题。由于json文件编码格式不符,导致出现json.decoder.JSONDecodeError。解决方案包括修改json编码格式或转换文件编码类型,如将utf-8转为ansi或cp936(GBK)。同时,解释了UTF-8和GBK/CP936编码的区别。
摘要由CSDN通过智能技术生成

由于自己的处理数据需求和labelme的直接使用处理还有差距,所以特此开发了新的工具,鸣谢我的合作伙伴,由于labelme工具解析json开源,则采用使得数据组织格式和标准json相同的方式。

解析代码如下:

修改文件为:D:\Users\Pangzhennan\Anaconda3\envs\labelme\Lib\site-packages\labelme\cli\json_to_dataset.py

此处路径同批量操作文件的代码。

# -*- coding: utf-8 -*-
import argparse
import json
import os
import os.path as osp
import warnings

import PIL.Image
import yaml

from labelme import utils
import base64


def main():
    warnings.warn("This script is aimed to demonstrate how to convert the\n"
                  "JSON file to a single image dataset, and not to handle\n"
                  "multiple JSON files to generate a real-use dataset.")
    parser = argparse.ArgumentParser()
    parser.add_argument('json_file')
    parser.add_argument('-o', '--out', default=None)
    args = parser.parse_args()

    json_file = args.j
LabelMe是一款用于图像标注的工具,它允许用户在图像上绘制边界框并为其添加标签。在使用LabelMe进行标注时,每个图像都会生成一个对应的JSON文件,其中包含了标注的详细信息。处理多个LabelMe的JSON文件时,可以采取以下方法: 首先,可以使用Python的json库来读取和解析JSON文件。通过读取每个JSON文件,可以获取图像的文件名、标注的类别和边界框的位置等信息。 然后,可以将解析得到的信息进行整合和统计。可以创建一个字典或列表来存储每个图像的信息,例如将文件名作为键,标注信息作为对应的值。这样可以方便后续对多个图像的信息进行处理和分析。 接下来,可以对多个图像的标注信息进行分析和统计。例如可以统计每个类别的出现次数,计算平均边界框的大小或长宽比等。这些分析可以帮助我们了解标注数据的特点和分布。 此外,还可以对多个图像的标注信息进行可视化。可以根据边界框的位置将它们绘制在对应的图像上,以便观察标注的效果和准确性。 最后,处理多个LabelMe的JSON文件时,需要注意错误处理和异常情况。例如,在读取JSON文件时可能会遇到文件不存在或格式错误的情况,需要进行适当的处理来避免程序出错。 总之,处理多个LabelMe的JSON文件可以通过解析、整合、分析和可视化等方法来获取和理解标注数据的内容和特点。这些技术可以帮助我们更好地利用和处理标注数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值