Leetcode---3.寻找两个正序数组的中位数

题目 寻找两个正序数组的中位数

给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1nums2。请你找出并返回这两个正序数组的 中位数 。

算法的时间复杂度应该为 O(log (m+n))

在这里插入图片描述

方法一:二分查找

给定两个有序数组,要求找到两个有序数组的中位数,最直观的思路有以下两种:

  1. 使用归并的方式,合并两个有序数组,得到一个大的有序数组。大的有序数组的中间位置的元素,即为中位数。

  2. 不需要合并两个有序数组,只要找到中位数的位置即可。由于两个数组的长度已知,因此中位数对应的两个数组的下标之和也是已知的。维护两个指针,初始时分别指向两个数组的下标 000 的位置,每次将指向较小值的指针后移一位(如果一个指针已经到达数组末尾,则只需要移动另一个数组的指针),直到到达中位数的位置。

如何把时间复杂度降低到O(log(m+n)) 呢?如果对时间复杂度的要求有 log,通常都需要用到二分查找,这道题也可以通过二分查找实现。

根据中位数的定义,当 m+n 是奇数时,中位数是两个有序数组中的第 (m+n)/2个元素,当 m+n是偶数时,中位数是两个有序数组中的第 (m+n)/2个元素和第 (m+n)/2+1 个元素的平均值。因此,这道题可以转化成寻找两个有序数组中的第 k小的数,其中 k 为 (m+n)/2 或 (m+n)/2+1。

假设两个有序数组分别是 A 和 B。要找到第 k 个元素,我们可以比较 A[k/2−1] 和 B[k/2−1],其中 / 表示整数除法。由于 A[k/2−1] 和 B[k/2−1] 的前面分别有 A[0…k/2−2] 和 B[0…k/2−2],即 k/2−1 个元素,对于 A[k/2−1] 和 B[k/2−1] 中的较小值,最多只会有(k/2−1)+(k/2−1)≤k−2 个元素比它小,那么它就不能是第 k小的数了。

因此我们可以归纳出三种情况

  1. 如果 A[k/2−1]<B[k/2−1],则比A[k/2−1] 小的数最多只有A 的前 k/2−1 个数和 B 的前k/2−1 个数,即比A[k/2−1] 小的数最多只有 k−2 个,因此 A[k/2−1] 不可能是第 k个数,A[0] 到 A[k/2−1] 也都不可能是第 k 个数,可以全部排除。

如果 A[k/2−1]>B[k/2−1],则可以排除 B[0] 到 B[k/2−1]。

如果 A[k/2−1]=B[k/2−1],则可以归入第一种情况处理。

可以看到,比较 A[k/2−1] 和 B[k/2−1] 之后,可以排除k/2 个不可能是第 k 小的数,查找范围缩小了一半。同时,我们将在排除后的新数组上继续进行二分查找,并且根据我们排除数的个数,减少k 的值,这是因为我们排除的数都不大于第 k 小的数。

有以下三种情况需要特殊处理

  1. 如果A[k/2−1] 或者B[k/2−1]越界,那么我们可以选取对应数组中的最后一个元素。在这种情况下,我们必须根据排除数的个数减少 k 的值,而不能直接将k 减去k/2。
  2. 如果一个数组为空,说明该数组中的所有元素都被排除,我们可以直接返回另一个数组中第 k 小的元素。
  3. 如果 k=1,我们只要返回两个数组首元素的最小值即可。

例子解释

用一个例子说明上述算法。假设两个有序数组如下:

A: 1 3 4 9
B: 1 2 3 4 5 6 7 8 9

两个有序数组的长度分别是 4 和 9,长度之和是 13,中位数是两个有序数组中的第 7个元素,因此需要找到第k=7 个元素。

比较两个有序数组中下标为 k/2−1=2 的数,即A[2] 和 B[2],如下面所示:
在这里插入图片描述

A: 1 3 4 9
       ↑
B: 1 2 3 4 5 6 7 8 9

由于 A[2]>B[2],因此排除 B[0]到 B[2],即数组 B 的下标偏移(offset)变为 3,同时更新 k 的值:k=k−k/2=4。

下一步寻找,比较两个有序数组中下标为 k/2−1=1 的数,即 A[1]和 B[4],如下面所示,其中方括号部分表示已经被排除的数。

在这里插入图片描述

A: 1 3 4 9
     ↑
B: [1 2 3] 4 5 6 7 8 9

由于 A[1]<B[4],因此排除 A[0] 到 A[1],即数组 A的下标偏移变为 2,同时更新 k 的值:k=k−k/2=2。

下一步寻找,比较两个有序数组中下标为 k/2−1=0的数,即比较 A[2]和 B[3],如下面所示,其中方括号部分表示已经被排除的数。

在这里插入图片描述

A: [1 3] 4 9
         ↑
B: [1 2 3] 4 5 6 7 8 9

由于 A[2]=B[3],根据之前的规则,排除 A中的元素,因此排除 A[2],即数组 A 的下标偏移变为 3,同时更新 k 的值: k=k−k/2=1。

由于 k 的值变成 1,因此比较两个有序数组中的未排除下标范围内的第一个数,其中较小的数即为第 k 个数,由于 A[3]>B[3],因此第 k 个数是 B[3]=4。
在这里插入图片描述

A: [1 3 4] 9
           ↑
B: [1 2 3] 4 5 6 7 8 9

代码

class Solution {
public:
    int getKthElement(const vector<int>& nums1, const vector<int>& nums2, int k) {
        /* 主要思路:要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较
         * 这里的 "/" 表示整除
         * nums1 中小于等于 pivot1 的元素有 nums1[0 .. k/2-2] 共计 k/2-1 个
         * nums2 中小于等于 pivot2 的元素有 nums2[0 .. k/2-2] 共计 k/2-1 个
         * 取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个
         * 这样 pivot 本身最大也只能是第 k-1 小的元素
         * 如果 pivot = pivot1,那么 nums1[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums1 数组
         * 如果 pivot = pivot2,那么 nums2[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums2 数组
         * 由于我们 "删除" 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数
         */

        int m = nums1.size();
        int n = nums2.size();
        int index1 = 0, index2 = 0;

        while (true) {
            // 边界情况
            if (index1 == m) {
                return nums2[index2 + k - 1];
            }
            if (index2 == n) {
                return nums1[index1 + k - 1];
            }
            if (k == 1) {
                return min(nums1[index1], nums2[index2]);
            }

            // 正常情况
            int newIndex1 = min(index1 + k / 2 - 1, m - 1);
            int newIndex2 = min(index2 + k / 2 - 1, n - 1);
            int pivot1 = nums1[newIndex1];
            int pivot2 = nums2[newIndex2];
            if (pivot1 <= pivot2) {
                k -= newIndex1 - index1 + 1;
                index1 = newIndex1 + 1;
            }
            else {
                k -= newIndex2 - index2 + 1;
                index2 = newIndex2 + 1;
            }
        }
    }

    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        int totalLength = nums1.size() + nums2.size();
        if (totalLength % 2 == 1) {
            return getKthElement(nums1, nums2, (totalLength + 1) / 2);
        }
        else {
            return (getKthElement(nums1, nums2, totalLength / 2) + getKthElement(nums1, nums2, totalLength / 2 + 1)) / 2.0;
        }
    }
};

复杂度分析

  1. 时间复杂度:O(log⁡(m+n)),其中 m 和 n 分别是数组 nums1和 nums2的长度。初始时有 k=(m+n)/2 或 k=(m+n)/2+1,每一轮循环可以将查找范围减少一半,因此时间复杂度是 O(log⁡(m+n))。

  2. 空间复杂度:O(1)。

  • 11
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值