原题链接
https://ac.nowcoder.com/acm/contest/38727/E
题目大意
有 n n n 个人玩复读游戏,如果复读的人不少于 p p p ,则最后第 p p p 个复读的人会受到惩罚。
复读的规则如下:
会有好几轮行动,每一轮中,
n
n
n 个人依次执行以下动作:
- 如果该成员之前复读过,则不能再复读;
- 否则,他可以选择是否复读。
若一轮中,没有任何人复读,则游戏结束。
第
i
i
i 个人如果在第
j
j
j 次复读,则其可以获得
a
i
,
j
a_{i,j}
ai,j 瓶冰红茶。但如果总复读人数不小于
p
p
p 个人,则倒数第
p
p
p 个人会倒扣
154
154
154 瓶冰红茶,即获得
−
154
-154
−154 瓶冰红茶,且无法获得
a
i
,
j
a_{i,j}
ai,j 瓶冰红茶。
每个人都想最大限度的获得冰红茶,求最终每个人能获得多少冰红茶。
题解
容易得到,因为每个人都不想亏这
−
154
-154
−154 瓶冰红茶,而
p
≤
n
p \leq n
p≤n
所以前面的人如果能取冰红茶,则尽量会选,不然剩下的数量就轮不到他了,
所以前
n
%
p
n \% p
n%p 个人会优先取自己的一部分,即
a
i
,
i
a_{i,i}
ai,i ,
当
i
>
n
%
p
i> n\%p
i>n%p 时,如果该成员选取了一部分,则当前的第一个位成为亏的这一方,并留给后面的人空位,
此时我们可以发现,每个
p
−
1
p-1
p−1 位内,第一位总是亏的,
后手必定将第一位变为亏的那一方,并自己有所盈,所以这第一位必然不选,没得赚总比亏了好,输出
0
0
0 即可。
参考代码
#include<bits/stdc++.h>
using namespace std;
template<class T>inline void read(T&x){
char c,last=' ';
while(!isdigit(c=getchar()))last=c;
x=c^48;
while(isdigit(c=getchar()))x=(x<<3)+(x<<1)+(c^48);
if(last=='-')x=-x;
}
const int MAXN=1e3+5;
int n,p;
int a[MAXN][MAXN];
int main()
{
read(n),read(p);
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
read(a[i][j]);
for(int i=1;i<=n;i++)
printf("%d ",i<=n%p?a[i][i]:0);
}