题目描述
如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先。
输入输出格式
输入格式:
第一行包含三个正整数N、M、S,分别表示树的结点个数、询问的个数和树根结点的序号。
接下来N-1行每行包含两个正整数x、y,表示x结点和y结点之间有一条直接连接的边(数据保证可以构成树)。
接下来M行每行包含两个正整数a、b,表示询问a结点和b结点的最近公共祖先。
输出格式:
输出包含M行,每行包含一个正整数,依次为每一个询问的结果。
输入输出样例
输入样例#1: 复制
5 5 4 3 1 2 4 5 1 1 4 2 4 3 2 3 5 1 2 4 5
输出样例#1: 复制
4 4 1 4 4
说明
时空限制:1000ms,128M
数据规模:
对于30%的数据:N<=10,M<=10
对于70%的数据:N<=10000,M<=10000
对于100%的数据:N<=500000,M<=500000
// luogu-judger-enable-o2
// luogu-judger-enable-o2
code:
#include<bits/stdc++.h>
using namespace std;
struct node{
int u,v;
}mp[1000005];
int s,n,m,que,d[500005],f[500005],ne[1000005],Lca[500005][20],t,x,y,a,b;
queue<int>q;
inline int read(){
int k=0,f=1;
char c=getchar();
for(;!isdigit(c);c=getchar())
if(c=='-')
f=-1;
for(;isdigit(c);c=getchar())
k=k*10+c-'0';
return k*f;
}
inline void add(int num){
ne[num]=f[mp[num].u];
f[mp[num].u]=num;
}
inline void LCA(){
while(q.size()){
x=q.front(),q.pop();
for(int i=f[x];i;i=ne[i]){
y=mp[i].v;
if(d[y])
continue;
d[y]=d[x]+1;
Lca[y][0]=x;
for(int j=1;j<=t;j++)
Lca[y][j]=Lca[Lca[y][j-1]][j-1];
q.push(y);
}
}
}
inline int F(int l,int r){
if(d[l]>d[r])
swap(l,r);
for(int i=t;i>=0;i--)
if(d[l]<=d[Lca[r][i]])
r=Lca[r][i];
if(l==r)
return l;
for(int i=t;i>=0;i--)
if(Lca[l][i]!=Lca[r][i])
l=Lca[l][i],r=Lca[r][i];
return Lca[l][0];
}
int main(){
n=read();
m=n-1;
que=read();
s=read();
t=(int)(log(n)/log(2))+1;
for(int i=1;i<=m*2;i+=2){
mp[i+1].v=mp[i].u=read();
mp[i+1].u=mp[i].v=read();
add(i);
add(i+1);
}
d[s]=1;
q.push(s);
Lca[s][0]=s;
LCA();
while(que--){
a=read(),b=read();
cout<<F(a,b)<<endl;
}
return 0;
}