lca板子

这篇博客介绍了如何使用LCA(最近公共祖先)算法解决图论问题,包括构建树形结构、深度优先搜索以及计算节点的祖先。在两个给定路径上,通过比较路径长度来判断它们是否有公共交点,对于路径交点的检测提供了有效解决方案。
摘要由CSDN通过智能技术生成
#include<bits/stdc++.h>
using namespace std;
const int N=5e5+10;
int head[N];
int n,m,s,f[N][30],lg[N],h[N];
///该结点的深度
///f[i][j]为i结点向上2^j的祖先
struct node
{
    int to,ne;
}bian[N*2];
int tot = 0;
void add_edge(int x,int y)
{
   tot++;
   bian[tot].to = y;
   bian[tot].ne = head[x];
   head[x] = tot;
}

void dfs(int x,int fx)///一个结点和他的父亲结点
{
    h[x] = h[fx]+1;///深度就加一
    f[x][0] = fx;

    for(int i=1; ( 1<<i )<=h[x]; i++)
    {
        f[x][i]=f[ f[x][i-1] ][i-1];
    }

    for(int i=head[x];i;i=bian[i].ne)
    {
        if(bian[i].to!=fx)///防止走回去了
        {
            dfs(bian[i].to,x);
        }
    }
}

int LCA(int x,int y)
{
    if(h[x]<h[y])
        swap(x,y);

    while(h[x]>h[y])
        x=f[x][ lg[h[x]-h[y]] ];

    if(x==y)
        return x;
    for(int i=lg[h[x]]; i>=0; i--)
        if(f[x][i]!=f[y][i])
            x=f[x][i],y=f[x][i];
    return f[x][0];
}

int main()
{
    scanf("%d %d %d",&n,&m,&s);

    for(int i=1; i<n; i++)
    {
        int x,y;
        scanf("%d %d",&x,&y);
        add_edge(x,y);
        add_edge(y,x);
    }

    dfs(s,0);

    for(int i=2; i<=n; i++)
        lg[i]=lg[i>>1]+1;

    while(m--)
    {
        int a,b;
        scanf("%d %d",&a,&b);
        printf("%d\n",LCA(a,b));
    }
    return 0;
}

求两条路径是不是有公共交点

#include<bits/stdc++.h>
using namespace std;
const int N=5e5+10;
int head[N];
int n,m,s,f[N][30],lg[N],h[N];
///该结点的深度
///f[i][j]为i结点向上2^j的祖先
#define bug(x) cout<<#x<<" == "<<x<<endl;
struct node
{
    int to,ne;
} bian[N*2];
int tot = 0;
void add_edge(int x,int y)
{
    tot++;
    bian[tot].to = y;
    bian[tot].ne = head[x];
    head[x] = tot;
}

void dfs(int x,int fx)///一个结点和他的父亲结点
{
    h[x] = h[fx]+1;///深度就加一
    f[x][0] = fx;

    for(int i=1; ( 1<<i )<=h[x]; i++)
    {
        f[x][i]=f[ f[x][i-1] ][i-1];
    }

    for(int i=head[x]; i; i=bian[i].ne)
    {
        if(bian[i].to!=fx)///防止走回去了
        {
            dfs(bian[i].to,x);
        }
    }
}

int LCA(int x,int y)
{
    if(h[x]<h[y])
        swap(x,y);

    while(h[x]>h[y])
        x=f[x][ lg[h[x]-h[y]] ];

    if(x==y)
        return x;
    for(int i=lg[h[x]]; i>=0; i--)
        if(f[x][i]!=f[y][i])
            x=f[x][i],y=f[y][i];
    return f[x][0];
}

int main()
{
    scanf("%d %d",&n,&m);
    for(int i=1; i<n; i++)
    {
        int x,y;
        scanf("%d %d",&x,&y);
        add_edge(x,y);
        add_edge(y,x);
    }

    dfs(1,0);
    for(int i=2; i<=n; i++)
        lg[i]=lg[i>>1]+1;

    while(m--)
    {
        int a,b;
        scanf("%d %d",&a,&b);

        int c,d;
        scanf("%d %d",&c,&d);
        int lcac=LCA(c,d);

        int disac = h[a]+h[c]-2*h[ LCA(a,c) ];
        int disbd = h[b]+h[d]-2*h[ LCA(b,d) ];
        int disab = h[a]+h[b]-2*h[ LCA(a,b) ];
        int discd = h[c]+h[d]-2*h[ LCA(c,d) ];
        if(disac+disbd>disab+discd)
        {
            printf("N\n");
        }
        else
        {
            printf("Y\n");
        }
    }
    return 0;
}

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值