LeetCode 96. 不同的二叉搜索树

文章介绍了LeetCode第96题的解决方案,使用动态规划方法来计算不同结构的二叉搜索树。通过分析n=3的情况,找出递推关系:dp[i]+=dp[j-1]*dp[i-j],并以此构建O(n^2)时间复杂度的算法。
摘要由CSDN通过智能技术生成

题目:

LeetCode 96. 不同的二叉搜索树

题解:动态规划

分析当n=3时,有哪些情况:

  1. 当1为头结点时,右子树有两个结点,其也是二叉搜索树,布局应该和n=2两棵树一模一样(只看布局,不关心数值)

  1. 当2为头结点时,左右子树各一个结点,左右布局应该和n=1一模一样

  1. 当3为头结点,左子树有两个结点,布局和n=2的一模一样

分析到这里,其实就能找到规律,dp[3] 是由 dp[1] 和 dp[2] 推导而来。

dp[3] = 1为头结点的搜索树数量 + 2为头结点的搜索树数量 + 3为头结点的搜索树数量

  • 1为头结点的搜索树数量 = 左子树0个结点的搜索树数量 * 右子树2个结点的搜索树数量

  • 2为头结点的搜索树数量 = 左子树1个结点的搜索树数量 * 右子树1个结点的搜索树数量

  • 2为头结点的搜索树数量 = 左子树2个结点的搜索树数量 * 右子树0个结点的搜索树数量

所以 dp[3] = dp[0] * dp[2] + dp[1] * dp[1] + dp[2] * dp[0]

递推关系:dp[i] += dp[以j为结点的左子树数量]*dp[以j为结点的右子树数量]

递推公式:dp[i] += dp[j-1]*dp[i-j],j 从1遍历到i

    public int numTrees(int n) {
        int[] dp = new int[n+1];
        dp[0] = 1;
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= i; j++) {
                dp[i] += dp[j-1] * dp[i-j];
            }
        }

        return dp[n];
    }

时间复杂度:O(n^2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值