一些套路的记录

1.如果一个数存在于多个LIS中,那么它在多个LIS中排名是一样的.
2.设 s t a r t i start_i starti表示以 i i i为开头的LIS, e n d i end_i endi表示以 i i i为结尾的LIS,那么总LIS为 m a x ( s t a r t i + e n d i − 1 ) max(start_i+end_i-1) max(starti+endi1)
3.一个数列 [ l . . r ] [l..r] [l..r] k k k,使 a i a_i ai+= C i + k − l k C_{i+k-l}^k Ci+klk,等价于将 [ l . . r ] [l..r] [l..r]做k次前缀和.
4.在树中,依题目而定,一条边的贡献可以从两端的连通块的信息得出.
5.关于 g c d gcd gcd的题目考虑质因子分开做.
6.关于极值的问题,分成两部分的局部极值必将包含全局最大值或全局最小值.
7.
∑ i = 1 n i ∗ 2 i − 1 \sum_{i=1}^{n}{i * 2^{i-1}} i=1ni2i1
∑ i = 1 n i ∗ 2 i − 1 = ∑ i = 1 n 2 i − 1 + ∑ i = 2 n 2 i − 1 + ∑ i = 3 n 2 i − 1 ⋯ \sum_{i=1}^{n}{i * 2^{i-1}} =\sum_{i=1}^{n}{2^{i-1}} + \sum_{i=2}^{n}{2^{i-1}} +\sum_{i=3}^{n}{2^{i-1}}\cdots i=1ni2i1=i=1n2i1+i=2n2i1+i=3n2i1
∑ i = 1 n i ∗ 2 i − 1 = [ ( n − 1 ) ∗ 2 n + 1 ] \sum_{i=1}^{n}{i * 2^{i-1}}=[(n-1)*2^n+1] i=1ni2i1=[(n1)2n+1]
8.一些比较高的幂次,由于幂操作的加减性,可以分开处理.
9.若 a k ≡ 1 ( m o d   p ) a^k\equiv1(mod\ p) ak1(mod p)且p是质数,则 k k k必定是 p − 1 p-1 p1的约数.
10.仅有and操作和仅有or操作对权值的修改都不会超过 l o g log log
11.对于一颗以任意节点为根的树,在以 r o o t root root为根的情况下, u u u v v v l c a lca lca L C A ( u , v ) LCA(u,v) LCA(u,v), L C A ( u , r o o t ) LCA(u,root) LCA(u,root), L C A ( v , r o o t ) LCA(v,root) LCA(v,root)当中深度最大的.
12.曼哈顿距离和切比雪夫距离在二维可以互相转化.
将曼哈顿距离转化为切比雪夫距离即 ( x , y ) (x,y) (x,y)变为 ( x + y , x − y ) (x+y,x-y) (x+y,xy).
将切比雪夫距离转化为曼哈顿距离即 ( x , y ) (x,y) (x,y)变为 ( x + y 2 , x − y 2 ) (\frac{x+y}{2},\frac{x-y}{2}) (2x+y,2xy).
13.树上点集之间边的和等于将点按照dfs序排序后,点a[x]到根的路径上的边的和减去a[x]到a[x]与a[x-1]的lca的路径上边的和.注意头尾也要连边。
14.树上的一条边必定连接两边的两个联通块,且两个联通块无交集,关于连通性的问题可以考虑将边按某种顺序排序后顺次维护.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>