Python作业—— Exercises.ipynb

这篇博客来源于CME193课程的练习,内容涉及数据分析。作者展示了如何计算数据集的平均值、方差和相关系数,并给出了四个数据集的回归分析结果。
摘要由CSDN通过智能技术生成

题目来源:

https://nbviewer.jupyter.org/github/schmit/cme193-ipython-notebooks-lecture/blob/master/Exercises.ipynb


题目说明:


前置代码内容:

%matplotlib inline

import random

import numpy as np
import scipy as sp
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import math

import statsmodels.api as sm
import statsmodels.formula.api as smf

sns.set_context("talk")

anascombe = pd.read_csv('data/anscombe.csv')
anascombe.head()

初始数据集为:


一:


代码如下:


运行结果:

Mean is as follows: 
x y 
dataset 
I 9.0 7.500909 
II 9.0 7.500909 
III 9.0 7.500000 
IV 9.0 7.500909 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值