Palace_的博客

无求一生光辉唯望斗志不会断

洛谷 P2330 [SCOI2005]繁忙的都市

题目链接

题目描述

城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造。城市C的道路是这样分布的:城市中有n个交叉路口,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条道路相连接。这些道路是双向的,且把所有的交叉路口直接或间接的连接起来了。每条道路都有一个分值,分值越小表示这个道路越繁忙,越需要进行改造。但是市政府的资金有限,市长希望进行改造的道路越少越好,于是他提出下面的要求:

1.改造的那些道路能够把所有的交叉路口直接或间接的连通起来。

2.在满足要求1的情况下,改造的道路尽量少。

3.在满足要求1、2的情况下,改造的那些道路中分值最大的道路分值尽量小。

任务:作为市规划局的你,应当作出最佳的决策,选择那些道路应当被修建。

输入输出格式

输入格式:

第一行有两个整数n,m表示城市有n个交叉路口,m条道路。接下来m行是对每条道路的描述,u, v, c表示交叉路口u和v之间有道路相连,分值为c。(1≤n≤300,1≤c≤10000,1≤m≤50000)

输出格式:

两个整数s, max,表示你选出了几条道路,分值最大的那条道路的分值是多少。

输入输出样例

输入样例#1: 
4 5
1 2 3
1 4 5
2 4 7
2 3 6
3 4 8
输出样例#1: 
3 6









思路:

最小生成树。不过是把求和的过程改成max。(会做这个省选题是不是本蒟蒻能去省选了?)


#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>

#define loop( i, a, b )	for( int i = a; i <= b; i++ )

using namespace std;

struct hahaedge {
	int s, e, d;
}a[10010];

int p[10010], n, m, cnt;

inline int find( int x ) {
	return p[x] == x ? x : p[x] = find( p[x] );  
} 

inline int cmp( hahaedge x, hahaedge y ) {
	return x.d < y.d;
}

int hahakru() {
	int anss = 0;
	loop( i, 1, n )	p[i] = i;
	sort( a + 1, a + 1 + m, cmp );
	loop( i, 1, m ) {
		int x = a[i].s;
		int y = a[i].e;
		if( find( x ) != find( y ) ) {
			cnt++;
			anss = max( a[i].d, anss );
			p[p[x]] = p[y];
		}
	}
	return anss;
}

int main() {
	scanf( "%d%d", &n, &m );
	loop( i, 1, m ) {
		scanf( "%d%d%d", &a[i].s, &a[i].e, &a[i].d );
	}
	int ans = hahakru();
	printf( "%d %d", cnt, ans );
	return 0;
}


阅读更多
文章标签: MST
个人分类: MST
上一篇洛谷P2820 局域网
下一篇洛谷 P1074 靶形数独
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭