pytorch实现学习率衰减的方法总结

本文详细介绍了PyTorch中torch.optim.lr_scheduler模块提供的六种学习率调整方法,包括StepLR、MultiStepLR、ExponentialLR、CosineAnnealingLR、ReduceLROnPlateau和LambdaLR,分别阐述了它们的参数设置、使用场景及代码示例。

前言:

之前在训练模型时一直使用自定义的学习率衰减函数,如下所示:

def adjust_learning_rate(args, optimizer, epoch, gamma=0.1):
    """Sets the learning rate to the initial LR decayed 0.1 every 50 epochs"""
    lr = args.lr * (0.1 ** (epoch // 50))
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

然后在每个epoch训练前调用一次,实现学习率的衰减:

    for epoch in range(args.start_epoch, args.epochs):
        adjust_learning_rate(args, optimizer, epoch, gamma=0.1)
        ......

后来发现pytorch也像tensorflow一样实现了很多学习率调整的方法,并封装在了torch.optim.lr_scheduler模块中,接下来对这些方法进行一下总结。

 

1. torch.optim.lr_scheduler.StepLR

* step_size (int): 学习率的衰减周期,单位是epoch。

* gamma(float): 学习率衰减的乘积因子,默认为0.1。

* 说明:等间隔的学习率衰减,每训练step_size个epoch,将学习率调整为lr=lr*gamma。

使用示例如下:

# Assuming optimizer uses lr = 0.05 for all groups
# lr = 0.05    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值