前言:
之前在训练模型时一直使用自定义的学习率衰减函数,如下所示:
def adjust_learning_rate(args, optimizer, epoch, gamma=0.1):
"""Sets the learning rate to the initial LR decayed 0.1 every 50 epochs"""
lr = args.lr * (0.1 ** (epoch // 50))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
然后在每个epoch训练前调用一次,实现学习率的衰减:
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(args, optimizer, epoch, gamma=0.1)
......
后来发现pytorch也像tensorflow一样实现了很多学习率调整的方法,并封装在了torch.optim.lr_scheduler模块中,接下来对这些方法进行一下总结。
1. torch.optim.lr_scheduler.StepLR
* step_size (int): 学习率的衰减周期,单位是epoch。
* gamma(float): 学习率衰减的乘积因子,默认为0.1。
* 说明:等间隔的学习率衰减,每训练step_size个epoch,将学习率调整为lr=lr*gamma。
使用示例如下:
# Assuming optimizer uses lr = 0.05 for all groups
# lr = 0.05

本文详细介绍了PyTorch中torch.optim.lr_scheduler模块提供的六种学习率调整方法,包括StepLR、MultiStepLR、ExponentialLR、CosineAnnealingLR、ReduceLROnPlateau和LambdaLR,分别阐述了它们的参数设置、使用场景及代码示例。
最低0.47元/天 解锁文章
1485

被折叠的 条评论
为什么被折叠?



