自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(135)
  • 收藏
  • 关注

原创 用python打造你自己的chatgpt问答机器人!(提供训练代码)-- 构建最基础的客户端,服务端和预模型

实现一个简单的RESTful API服务,允许客户端发送文本消息给服务器,服务器则利用预训练的语言模型生成回复并返回给客户端。通过这种方式,用户可以通过HTTP请求与我们的聊天机器人进行交流。

2025-01-04 15:50:01 2926 18

原创 利用机器学习预测离婚:从数据分析到模型构建(含方案和源码)

在本文中,我们详细介绍了如何使用递归特征消除法(RFE)和递归特征消除与交叉验证(RFECV)进行特征选择,并展示了如何在离婚预测数据集上应用这些方法。通过 RFECV,我们确定了最佳的特征数量,并选择了排名为 1、2、3 和 4 的特征。我们还进行了模型训练、交叉验证和性能评估,确保模型在测试集上的表现良好。

2024-12-03 17:59:56 1523

原创 机器学习预测实战 -- 信用卡交易欺诈数据监测(含方案和代码思路)

项目背景一批交易数据,数据总量28万,其中正常交易数据量占比99.83%,欺诈交易数据量仅占比0.17%。目标训练出一个模型,能判断出交易数据是正常数据还是欺诈数据方案一:下采样的方法训练模型获取数据import pandas as pdimport numpy as npimport seaborn as snsimport matplotlib.pyplot as pltimport timeimport warningswarnings.filterwarning

2022-03-27 00:10:47 11505 83

原创 从训练到部署:基于 Qwen2.5 和 LoRA 的轻量化中文问答系统全流程实战

《基于LoRA技术的轻量级中文问答系统构建方案》介绍了一套完整的轻量级大语言模型解决方案。采用阿里云Qwen2.5系列模型结合LoRA微调技术,实现了从多GPU分布式训练到Web部署的全流程。方案包含三大核心模块:分布式训练脚本、LoRA模型合并工具,以及基于Gradio的Web交互界面。通过LoRA技术显著降低训练成本,合并后的模型简化了部署流程,Gradio界面支持流式响应和多轮对话。该方案具有模块化设计、训练效率高、部署简单等特点,适合个人开发者和中小企业构建中文问答应用。完整代码已开源共享。

2025-06-04 11:04:48 398

原创 打造可扩展的大模型训练框架:支持PEFT微调、分布式训练与TensorBoard可视化

本文介绍了一个模块化的NLP模型训练框架,支持LoRA微调、多卡训练和TensorBoard可视化。主要内容包括:1) 分布式训练环境初始化;2) JSON数据集预处理为HuggingFace格式;3) 支持8bit量化的模型加载;4) 自定义Trainer实现训练可视化;5) 将所有模块整合为完整训练流程。该框架基于HuggingFace Transformers和PEFT库开发,具备生产环境适用性,未来可扩展评估测试、DeepSpeed集成等功能。

2025-06-04 10:37:05 489

原创 煤矿煤质自动分类识别(毕设项目,内有数据集和源码)

根据了解传统的煤质分类方法主要依赖人工采样和实验室分析,存在效率低、成本高、实时性差等问题。

2025-06-03 11:23:15 617

原创 大模型学习笔记day2 LoRA微调

LoRA方法通过在预训练模型旁添加低秩矩阵(A和B)实现参数高效微调。A初始化为正态分布,B初始化为零矩阵,确保初始阶段不干扰原模型表现。

2025-05-26 15:32:51 426

原创 机器学习模型训练模块技术文档

pass功能:创建模型训练器的基础类,当前无需特殊初始化参数。

2025-05-05 19:05:06 369

原创 基于PyTorch的图像分类特征提取与模型训练文档

本代码实现了一个基于PyTorch的图像特征提取与分类模型训练流程。核心功能包括:使用预训练ResNet18模型进行图像特征提取将提取的特征保存为标准化格式基于提取的特征训练分类模型。

2025-04-29 17:00:02 529

原创 大模型学习笔记 day01 提示工程入门1.One-shot & Few-shot提示学习法

解决CoT提示方法泛化能力不足的问题——即通过人工编写的思维链提示样本可能并不能够很好的迁移到别的问题当中去,换而言之,就是解决问题的流程迁移能力不足,即泛化能力不够。,只不过LtM会要求模型根据每个不同的问题,单独生成解决问题的链路,以此做到解决问题流程的“千人千面”,从而能够更加精准的解决复杂推理问题。输入一些类似问题和问题答案,让模型参考学习,并在同一个prompt的末尾提出新的问题,依次提升模型的推理能力。),从而让模型学到思维链的推导过程,并将其应用到新的问题中。来解决最原始的问题。

2025-04-21 15:03:21 373

原创 大模型学习笔记 day01

设定模型的背景、行为或任务规则。

2025-04-21 14:15:25 335

原创 Python零基础学习第四天:文件操作与异常处理

用except Exception as e捕获所有异常,print(e)查看错误信息。文件就像电子笔记本,需要先“翻开”才能读写,用完必须“合上”(防止数据丢失)。:面向对象编程初探——用类描述现实世界(学生类、汽车类、银行账户类):encoding="utf-8" 解决中文乱码问题。:如果尝试用r模式打开不存在的文件会怎样?:读取用户文件时防崩溃。

2025-04-07 09:40:02 780

原创 Python零基础学习第三天:函数与数据结构

函数是什么?想象你每天都要重复做同一件事,比如泡咖啡。函数就像你写好的泡咖啡步骤说明书,每次需要时直接按步骤执行,不用重新想流程。参数类型必须参数:调用时必须传递(如make_coffee(2)里的2)默认参数:不传值时使用默认值(如sugar=1)可变参数:接收任意数量参数(*args用于元组,**kwargs用于字典)返回值用return返回结果,可返回多个值(实际是元组)无return时函数返回None。

2025-04-07 09:26:13 210

原创 Python零基础学习第三天:函数与数据结构

def student_info(name, age, *hobbies, **scores): print(f"姓名:{name}, 年龄:{age}") print("爱好:", hobbies) print("成绩:", scores) student_info("小明", 18, "篮球", "编程", 数学=90, 英语=85)可变参数:接收任意数量参数(*args用于元组,**kwargs用于字典)局部变量:函数内部定义的变量(如函数内的add)元组(Tuple)与集合(Set)

2025-03-09 17:06:11 1214 1

原创 Python零基础学习第二天(条件语句,循环语句)

这里有个重要的点,我们☞使用了一次print,却有十次打印的内容,这种情况就是循环的作用,因为上面我们说到了有几个字就循环几次,而循环的内容就是for语句下面的内容(这里就是print),所以这个print会执行十次。for循环适用于已知迭代次数的情况(可能有点看不懂这句话,举个例子我现在有一句话,“我是小野猪”,这句话交给for循环去处理它就会把这句话的每一个字都一一去出来,有几个字就循环几次)。流程你能说清楚了说明这个控制语句你就懂了,不能说清楚的,可以评论区告诉我疑问点在那?

2025-02-25 17:00:22 287

原创 怎么用好deepseek

这本书最狠的地方在于——它直接把Deepseek拆解成了“傻瓜式操作指南”,哪怕你是完全没接触过AI的小白,也能快速登顶行业头部梯队。毫不夸张地说,普通人用透Deepseek的这一刻,就是你甩开同龄人、打破行业壁垒的起点——2025年的信息战场,谁先握紧这把“智能左轮”,谁就能在职场、学术甚至副业赛道实现精准降维打击。而关于deepseek的入门到精通的学习,由清华大学新闻与传播学院出版的这一本《deepseek:从入门到精通》绝对能给你想要的答案。对比BCD供应商的品控体系差异”

2025-02-25 16:57:51 1151

原创 python零基础学习第一天(注释,变量,数据类型,输入和输出)

今天开始我们零基础学习的第一天,首先没有安装好python环境和的同学可以有专门的,大家跟着做安装好,有问题可以。然后先给大家提醒一下,下面的内容不会说的特别细,特别多,大家要重点关注文章最后的作业,去用文中的内容实现它,我们更多的要在实际敲代码的过程中去使用才能真正记住。

2025-02-24 14:49:06 777

原创 deepseek从入门到精通pdf自取

直接给链接:https://pan.quark.cn/s/1d6a0f5ea540。

2025-02-10 11:09:10 2169 3

原创 博客标题:使用Go和RabbitMQ构建高效的消息队列系统

在现代分布式系统中,消息队列扮演着至关重要的角色。它们允许不同组件之间异步通信,从而提高系统的可扩展性和可靠性。今天我们将探讨如何利用Go语言和流行的开源消息代理RabbitMQ来创建一个简单但功能强大的消息队列系统。

2025-01-04 16:18:54 1049 4

原创 cuda11.6和对应的cudnn(windows)

大家自取,cudnn的官网注册还是有点麻烦的。

2025-01-04 14:18:01 602

原创 新年到了!使用Python创建一个简易的接金元宝游戏

球的位置、速度和尺寸# 板的位置、宽度和高度。

2025-01-03 14:54:51 2149 14

原创 go语言调用s3接口通过rgw节点创建ceph用户

Response 和 Credentials 结构体用于解析从 Ceph 返回的 JSON 数据。这些数据包含了用户的访问密钥和密钥。

2025-01-03 14:31:23 559

原创 25年1月更新。Windows 上搭建 Python 开发环境:PyCharm 安装全攻略(文中有安装包不用官网下载)

PyCharm 提供两种主要版本——社区版(免费)和专业版(付费)。对于初学者和个人开发者而言,社区版通常足够满足需求。你可以通过 官方网站下载适用于 Windows 的 PyCharm 社区版。点击浏览选择你的安装目录然后点下一步,(还是不要有中文,然后选择空间大的盘,尽量不要在c盘)这里和python环境一样,直接给大家一个下载好的不用去官网下了。这里全部选上,可以帮你自动添加环境变量很方便,点。到这里安装就完成了,

2025-01-02 21:17:34 502

原创 25年1月更新。Windows 上搭建 Python 开发环境:Python + PyCharm 安装全攻略(文中有安装包不用官网下载)

随着 Python 在数据科学、Web 开发、自动化脚本等多个领域的广泛应用,越来越多的开发者选择它作为首选编程语言。而 PyCharm 作为一个功能强大的集成开发环境(IDE),为 Python 开发者提供了极大的便利。本文将详细介绍如何在 Windows 操作系统中安装 Python 解释器以及 PyCharm IDE,帮助你快速构建一个高效的 Python 开发环境。

2025-01-02 21:00:31 669

原创 unbuntu使用snap打包流程梳理

使用 --dangerous 参数是因为你正在安装一个未经验证的本地 Snap 包。这将会创建一个 .snap 文件,它就是你可以分发给 Ubuntu 用户的包。使用以下命令来运行刚刚安装的包。

2024-12-16 14:33:01 421

原创 An error occurred with the instance when trying to launch with ‘multipass‘: returned exit code 2.

snap打包过程中出现:An error occurred with the instance when trying to launch with 'multipass': returned exit code 2.Ensure that 'multipass' is setup correctly and try again.

2024-12-16 11:51:37 229

原创 构建优秀技术文档的规划布局之道

在着手编写之前,首先要明确这份文档是为了什么而存在。是作为新手入门指南?还是为资深工程师提供的深入参考?亦或是面向客户的操作手册?不同的目的决定了文档的内容深度和技术术语的选择。

2024-12-13 14:37:04 467

原创 AI技术在电商中的创新应用

综上所述,AI技术正在重塑电商行业的各个层面,从提升用户体验到优化内部运作流程。未来,随着算法的进步和技术成本的降低,我们可以期待看到更多创新的应用场景涌现出来,推动整个行业向更高层次发展。无论是初创企业还是大型零售商,都应该积极拥抱这一变革浪潮,利用AI的力量创造更大的商业价值和社会效益。

2024-12-13 14:31:18 500

原创 python清华源安装地址

【代码】python清华源安装地址。

2024-12-03 14:51:41 1157

原创 解锁电商新时代:AI技术如何重塑购物体验与运营效率

随着技术的发展,越来越多的电商平台开始尝试运用AI技术来提高销售效率,从用户体验到供应链管理,AI深刻影响着行业的未来发展趋势。在AI加持下,如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法,为电商行业的数字化转型提供新的思路和方法。

2024-11-29 15:06:08 548

原创 正则表达式匹配入门

正则表达式(Regular Expression,简称 regex 或 regexp)是一种强大的文本处理工具,用于在字符串中查找、匹配和替换特定模式。它广泛应用于各种编程语言和文本编辑器中,是处理文本数据的强大武器。

2024-11-29 11:59:03 384

原创 爬虫入门必看,最简单的python爬虫讲解!

对于爬虫新手来说,大家可以这样去理解,爬虫的过程就是”使用一个的过程“接下来我用代码来验证上面这句话。

2024-11-29 11:42:40 952

原创 webSocket模块组件

try {});// 错误处理// 根据消息类型处理消息// 调用相应的业务逻辑// ...// 假设我们得到了响应数据"}};if (!task();} else {

2024-07-19 15:19:35 737

原创 c++人脸识别项目,满足工业界对于人脸识别系统的高标准需求!(一)

在工业界,,一直是实现计算机视觉和机器学习任务的热门语言,尤其是在需要。而(Facebook AI Similarity Search)作为一个高效的相似性搜索库,专为大规模特征向量的相似性搜索和聚类任务设计,尤其擅长处理高维向量空间中的近似最近邻搜索问题,这在人脸识别中尤为重要,因为人脸识别常常涉及到在大型特征数据库中快速查找最相似的人脸特征。,也是机器学习和AI领域广泛使用的语言,但在对性能有严格要求的工业级应用中,C++与FAISS的组合由于其卓越的性能表现,成为追求极致效率和资源利用的首选。

2024-07-19 15:11:23 1341

原创 c++人脸识别项目,满足工业界对于人脸识别系统的高标准需求!(二)

在第一个章节时,我们完成了基本功能的实现,同时也带来了问题就是添加的人脸没有永久保存的问题。今天我们讲解决这些问题。

2024-07-19 15:11:08 703

原创 跨平台webSocket模块设计技术解决方案

目标:设计并实现一个能够在多种操作系统上运行的WebSocket通讯模块,支持与前端浏览器和HTTPS服务端进行数据交换。技术栈:C++11 ,使用跨平台库如 Boost处理网络IO,使用 JSON 库如 nlohmann/json 解析消息。

2024-07-19 15:09:53 828

原创 源码获取说明

我们讲到了建立人脸识别新增人脸和人脸搜索函数,其中都需要传入一个人脸数据来作为增加和搜索的依据,然后提到了在文中没有讲到的人脸检测和特征提取的部分。在此代码中我们会运用到libtorch和opencv来处理人脸数据。可以购买本专栏,然后用购买截图私信我获取源码。

2024-06-25 09:29:33 125

原创 STL标准模板库:现代C++编程的基石

STL(Standard Template Library)是C++编程语言中极其重要的一部分,它是一组高效且高度灵活的软件组件,旨在提升程序员的工作效率和代码质量。STL不仅提供了丰富的数据结构(容器),还包含了泛型算法和迭代器,三者紧密协作,构成了一个强大的工具库,广泛应用于各种复杂的数据处理场景。

2024-06-19 17:27:16 523

原创 函数模板与类模板深入解析及实例

函数模板和类模板是C++中泛型编程的核心,它们极大地增强了代码的复用性和灵活性。通过实例化,我们可以为不同数据类型生成定制化的函数和类,同时通过特化处理特殊情况,确保了泛型代码的适用范围和效率。理解模板的二次编译、隐式推断、重载规则以及特化技巧,对于高效地使用模板至关重要。类模板的成员函数只有在被调用时才实例化。如果成员函数是虚函数,则会在编译期实例化所有可能的版本。函数模板允许我们编写适用于多种数据类型的通用函数。数值形式的模板参数允许使用整数等作为模板参数。:特化类模板中的某个成员函数。

2024-06-19 17:24:10 481

原创 多态、虚函数表与动态绑定的深入解析

多态性允许子类重写基类中的方法,使得通过基类引用来调用这些方法时,实际执行的是子类中对应的实现。这一特性在C++中主要通过虚函数来实现。// 输出 "Woof!delete pet;在这个例子中,Animal类定义了一个虚函数speak()Dog类继承自Animal并重写了speak()方法。通过基类指针pet调用speak(),由于多态的存在,输出的是 "Woof!",而非 "Some animal sound"。

2024-06-11 09:51:45 487

煤炭领域煤矿媒质分析毕业设计代码与数据集分享:代码,成果展示以及对应数据集

内容概要:本文主要介绍了煤矿媒质分析毕业设计的相关资源分享,包括代码和数据集两部分资源。代码部分涵盖完成煤矿媒质分析毕业设计所需的编程实现,被压缩打包成“bs.zip”文件;数据集则是支撑该毕业设计研究与验证的数据资源,以“data.zip”的形式。 适合人群:正在进行类似课题研究或者对煤矿媒质分析领域感兴趣的科研人员、高校相关专业学生。; 使用场景及目标:①为正在准备相同或相似方向毕业设计的学生提供参考案例与数据支持;②帮助研究人员获取煤矿媒质分析的第一手资料与实现代码,促进学术交流和技术进步。;

2025-06-04

测试yolov8pose的训练图片和标注数据集

数据集中图像主要包含关键点检测,人的识别,使用labelimg标注

2025-06-04

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除