1.题目如下:
路径 被定义为一条从树中任意节点出发,沿父节点-子节点连接,达到任意节点的序列。同一个节点在一条路径序列中 至多出现一次 。该路径 至少包含一个 节点,且不一定经过根节点。
路径和 是路径中各节点值的总和。
给你一个二叉树的根节点 root ,返回其 最大路径和 。
示例 1:
输入:root = [1,2,3]
输出:6
解释:最优路径是 2 -> 1 -> 3 ,路径和为 2 + 1 + 3 = 6
示例 2:
输入:root = [-10,9,20,null,null,15,7]
输出:42
解释:最优路径是 15 -> 20 -> 7 ,路径和为 15 + 20 + 7 = 42
提示:
树中节点数目范围是 [1, 3 * 104]
-1000 <= Node.val <= 1000
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/binary-tree-maximum-path-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
2.代码如下:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
//动态规划、递归
/*思路:
*对于每一个根节点,选择一个能够使路径和最大的左右子树根作为连接结点,对于每个子树都是如此;
*每个结点只能链接一次在路径中
*递归思想和分治思想类似,以此向下递归遍历左右子树
*/
int maxPathSum(TreeNode* root) {
int maxSum=INT_MIN;
getMax(root,maxSum);
return maxSum;
}
int getMax(TreeNode* root,int &maxSum){
//深度遍历到叶结点停止
if(root==nullptr){
return 0;
}
//记录根节点左右子树的最大路径和,如果左子树或右子树的路径小于0,则就是0;
int leftMax=max(getMax(root->left,maxSum),0);
int rightMax=max(getMax(root->right,maxSum),0);
//每个子树的根节点都会遍历;根结点值加上左右子树的最大路径就是这个根节点的最大路经,用maxsum来存储
int temp=root->val+leftMax+rightMax;
//一个根节点加上左右子树的中的最大路径。
maxSum=max(maxSum,temp);
//max()代表一个根节点只能选择左右子树的其一作为路径的一部分才能满足作为路径一部分的条件。
return root->val+max(leftMax,rightMax);
}
};