爬取三国演义小说的所有章节标题和章节内容
需求
爬取三国演义小说的所有章节标题和章节内容,采用bs4方式进行数据解析。网站首页:诗词名句网
数据分析
采用bs4方式进行数据解析
bs4数据解析
bs4的常用方法以及相关环境安装和说明如下:
- bs4数据解析
- 数据解析的原理:
1.标签定位
2.提取标签、标签属性中存取的数据值
- bs4数据解析的原理:
1.实例化一个BeatifulSoup对象,并且将页面源码数据加载到该对象中
2.通过调用BeautifulSoup对象中相关的属性或者方法进行标签定位和数据提取
- 环境安装:
pip install bs4
pip install lxml
- 如何实例化BeautifulSoup对象:
from bs4 import BeautifulSoup
对象实例化:
1.将本地的html文档中的数据加载到该对象中
fp = open('./text.html','r',encoding='utf-8')
soup = BeautifulSoup(fp,'lxml')
2.将互联网上获取的页面源码加载到该对象中
page_text = response.text
soup = BeautifulSoup(page_text,'lxml')
提供的用于数据解析的方法和属性:
1.soup.tagName 返回文档中第一次出现的tagName标签
soup.a 返回第一个a标签内容
2.soup.find('div',class_='song') 返回class名为song的div标签
3.soup.find_all('a') 返回所有的a标签
4.soup.select('某种选择器(id,class,标签...选择器)') 返回的是一个列表
soup.select('.tang') 返回.tang的内容列表
5.soup.select('层级选择器')
soup.select('.tang > ul > li > a')[0] 层级返回至a标签的第一个 >表示一个层级
soup.select('.tang > ul a')[0] 层级返回至a标签的第一个 空格表示多个层级
6.获取标签之间的文本数据
soup.a.text 获取a标签下所有文本内容
soup.a.string 获取的是直系的文本内容
soup.a.get_text() 获取a标签下所有文本内容
7.获取标签中的属性值
soup.a['herf'] 获取a标签中herf的属性的值
准备工作
分析得三国演义的标题和具体链接都在div_class名为book-mulu的li下。
点开某以章节后,得到具体的章节内容在div_class名为chapter_content下的p标签中
编码流程
- 对首页的页面数据进行爬取
- 实例化Beautifulsoup,需要将首页源码加载到该对象中
- 解析章节标题和详情页url
- 根据详情页url解析出详情页中相关章节内容
- 存入文件
代码
# 需求:爬取三国演义小说的所有章节标题和章节内容 网站首页:https://www.shicimingju.com/book/sanguoyanyi.html
import requests
from bs4 import BeautifulSoup
if __name__ == '__main__':
url = 'https://www.shicimingju.com/book/sanguoyanyi.html'
# UA伪装
headers = {
'User-Agent' : 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.193 Safari/537.36'
}
#对首页的页面数据进行爬取
page_text = requests.get(url=url,headers=headers).text
#print(page_text)
#在首页中解析出章节的标题和详情页的url
#1.实例化Beautifulsoup,需要将页面源码加载到该对象中
soup = BeautifulSoup(page_text,'lxml')
#解析章节标题和详情页url
li_list = soup.select('.book-mulu li')
#print(li_list)
fp = open('./sanguo.txt','w',encoding='utf-8')
for li in li_list:
title = li.a.string
detail_url = 'https://www.shicimingju.com'+li.a['href']
#对详情页发起请求,解析出章节内容
detail_text = requests.get(url=detail_url,headers=headers).text
#解析出详情页中相关章节内容
detail_soup = BeautifulSoup(detail_text,'lxml')
div_tag = detail_soup.find('div',class_='chapter_content')
#解析到章节内容
content = div_tag.text
fp.write(title+':'+content+'\n')
print(title,'获取成功!')
**