子集枚举讲解和【题解】—— [NOIP2002 普及组] 选数
1.子集枚举讲解
枚举算法题中有这样一类题目,给你一些元素,让你从中选出几个,也就是子集。然后将符合要求的子集统计下来。
集合和二进制有着密不可分的关联。我们可以用一串二进制数来表示一个集合的子集。1代表选这个数,0代表不选这个数。每个元素都有两种可能。因此一个 n n n元集合有 2 n 2^n 2n个子集。
考虑集合 A = 1 , 2 , 3 , 4 , 5 A={1,2,3,4,5} A=1,2,3,4,5和它的四个子集 A 1 = 1 , 3 , 4 , 5 A_1={1,3,4,5} A1=1,3,4,5, A 2 = 1 , 4 , 5 A_2={1,4,5} A2=1,4,5, A 3 = 3 A_3={3} A3=3, A 4 = 2 , 3 A_4={2,3} A4=2,3。
按照逆序,把全集
A
A
A的每个元素在每个子集里的出现情况用0
和1
表示,如下:
A A A中元素 | 1 | 2 | 3 | 4 | 5 | 二进制 | 对应十进制 |
---|---|---|---|---|---|---|---|
A 1 A_1 A1中出现情况 | 1 | 0 | 1 | 1 | 1 | 11101 | a 1 a_1 a1=29 |
A 2 A_2 A2中出现情况 | 1 | 0 | 0 | 1 | 1 | 11001 | a 2 a_2 a2=25 |
A 3 A_3 A3中出现情况 | 0 | 0 | 1 | 0 | 0 | 00100 | a 3 a_3 a3=4 |
A 4 A_4 A4中出现情况 | 0 | 0 | 1 | 1 | 0 | 01100 | a 4 a_4 a4=6 |
本例中一共有5个元素。表示仅包含i个元素的集合的数字可以写成1<<(i-1)
,而全集可以表示成a=(1<<n)-1
,空集表示为0。
集合之间的常用关系:
1)并集
∪
\cup
∪:指
A
2
A_2
A2,
A
3
A_3
A3包含的元素合并起来能够得到
A
1
A_1
A1,可得a1=a2|a3
2)交集
∩
\cap
∩:指两个集合中同时存在的元素组成的集合,可得a3=a1&a4
3)包含
⊆
\subseteq
⊆:集合
A
2
A_2
A2的所有元素都在
A
1
A_1
A1中出现,可得(a1|a2==a1)&&(a1&a2==a2)
4)属于
∈
\in
∈:指某个元素在集合中,是包含的一种特殊情况,要判断元素3
是否属于
a
1
a_1
a1,可以写成1<<(3-1)&a1
;
5)补集
C
u
P
C_uP
CuP:是指全集去除了某个集合后剩下的元素组成的集合,例如
a
2
a_2
a2的补集可以表示成a^a2
。
2.[NOIP2002 普及组] 选数
题目描述
已知 n n n 个整数 x 1 , x 2 , ⋯ , x n x_1,x_2,\cdots,x_n x1,x2,⋯,xn,以及 1 1 1 个整数 k k k( k < n k<n k<n)。从 n n n 个整数中任选 k k k 个整数相加,可分别得到一系列的和。例如当 n = 4 n=4 n=4, k = 3 k=3 k=3, 4 4 4 个整数分别为 3 , 7 , 12 , 19 3,7,12,19 3,7,12,19 时,可得全部的组合与它们的和为:
3 + 7 + 12 = 22 3+7+12=22 3+7+12=22
3 + 7 + 19 = 29 3+7+19=29 3+7+19=29
7 + 12 + 19 = 38 7+12+19=38 7+12+19=38
3 + 12 + 19 = 34 3+12+19=34 3+12+19=34
现在,要求你计算出和为素数共有多少种。
例如上例,只有一种的和为素数: 3 + 7 + 19 = 29 3+7+19=29 3+7+19=29。
输入格式
第一行两个空格隔开的整数 n , k n,k n,k( 1 ≤ n ≤ 20 1 \le n \le 20 1≤n≤20, k < n k<n k<n)。
第二行 n n n 个整数,分别为 x 1 , x 2 , ⋯ , x n x_1,x_2,\cdots,x_n x1,x2,⋯,xn( 1 ≤ x i ≤ 5 × 1 0 6 1 \le x_i \le 5\times 10^6 1≤xi≤5×106)。
输出格式
输出一个整数,表示种类数。
输入输出样例
输入 #1
4 3
3 7 12 19
输出 #1
1
提示
【题目来源】
NOIP 2002 普及组第二题
1.题意解析
我在【题解】【搜索】—— [NOIP2002 普及组] 选数中,就已经讲解过了子集枚举和深搜两种方法。在这里,我们只详细介绍介绍子集枚举的方法。
根据上文,我们定义一个变量U=1<<n
, 那么U-1
表示全集。定义一个变量S
,表示当前枚举的集合。
在algoriithm
头文件中,定义了一个__builtin_popcount
函数,用来统计一个数二进制形式中1
的个数。我们可以用它找到一个含有k
个元素的子集,即
k
k
k元子集。
然后定义一个变量sum=0
,用来统计当前
k
k
k元子集的和。根据上文,我们可以这样判断全集中的第i
个数是否被选中:
for(int i=1;i<=n;i++)
if(S&1<<(i-1))//如果这个元素属于k元子集
sum+=a[i];
最后定义一个check
函数,用来判断和是否是质数就行了。
2.AC代码
#include<bits/stdc++.h>
using namespace std;
int a[30];
bool check(int x)//判断是否是质数的函数
{
if(x<2)return 0;
for(int i=2;i*i<=x;i++)
if(x%i==0)
return 0;
return 1;
}
int main()
{
int n,k,ans=0;
cin>>n>>k;
for(int i=1;i<=n;i++)
cin>>a[i];
int U=1<<n;//U-1即为全集
for(int S=0;S<U;S++)//从空集枚举到全集
if(__builtin_popcount(S)==k)//找到k元子集
{
int sum=0;//k元子集之和
for(int i=1;i<=n;i++)
if(S&1<<(i-1))//如果这个元素属于k元子集
sum+=a[i];
if(check(sum))//是质数结果就+1
ans++;
}
cout<<ans;
return 0;
}
喜欢就订阅此专辑吧!
【蓝胖子编程教育简介】
蓝胖子编程教育,是一家面向青少年的编程教育平台。平台为全国青少年提供最专业的编程教育服务,包括提供最新最详细的编程相关资讯、最专业的竞赛指导、最合理的课程规划等。本平台利用趣味性和互动性强的教学方式,旨在激发孩子们对编程的兴趣,培养他们的逻辑思维能力和创造力,让孩子们在轻松愉快的氛围中掌握编程知识,为未来科技人才的培养奠定坚实基础。
欢迎扫码关注蓝胖子编程教育