子集枚举讲解和【题解】—— [NOIP2002 普及组] 选数

1.子集枚举讲解

    枚举算法题中有这样一类题目,给你一些元素,让你从中选出几个,也就是子集。然后将符合要求的子集统计下来。

    集合和二进制有着密不可分的关联。我们可以用一串二进制数来表示一个集合的子集。1代表选这个数,0代表不选这个数。每个元素都有两种可能。因此一个 n n n元集合有 2 n 2^n 2n个子集。

    考虑集合 A = 1 , 2 , 3 , 4 , 5 A={1,2,3,4,5} A=1,2,3,4,5和它的四个子集 A 1 = 1 , 3 , 4 , 5 A_1={1,3,4,5} A1=1,3,4,5 A 2 = 1 , 4 , 5 A_2={1,4,5} A2=1,4,5 A 3 = 3 A_3={3} A3=3 A 4 = 2 , 3 A_4={2,3} A4=2,3

    按照逆序,把全集 A A A的每个元素在每个子集里的出现情况用01表示,如下:

A A A中元素12345二进制对应十进制
A 1 A_1 A1中出现情况1011111101 a 1 a_1 a1=29
A 2 A_2 A2中出现情况1001111001 a 2 a_2 a2=25
A 3 A_3 A3中出现情况0010000100 a 3 a_3 a3=4
A 4 A_4 A4中出现情况0011001100 a 4 a_4 a4=6

    本例中一共有5个元素。表示仅包含i个元素的集合的数字可以写成1<<(i-1),而全集可以表示成a=(1<<n)-1,空集表示为0。

    集合之间的常用关系:
1)并集 ∪ \cup :指 A 2 A_2 A2, A 3 A_3 A3包含的元素合并起来能够得到 A 1 A_1 A1,可得a1=a2|a3
2)交集 ∩ \cap :指两个集合中同时存在的元素组成的集合,可得a3=a1&a4
3)包含 ⊆ \subseteq :集合 A 2 A_2 A2的所有元素都在 A 1 A_1 A1中出现,可得(a1|a2==a1)&&(a1&a2==a2)
4)属于 ∈ \in :指某个元素在集合中,是包含的一种特殊情况,要判断元素3是否属于 a 1 a_1 a1,可以写成1<<(3-1)&a1
5)补集 C u P C_uP CuP:是指全集去除了某个集合后剩下的元素组成的集合,例如 a 2 a_2 a2的补集可以表示成a^a2

2.[NOIP2002 普及组] 选数

通往洛谷的传送门

题目描述

已知 n n n 个整数 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn,以及 1 1 1 个整数 k k k k < n k<n k<n)。从 n n n 个整数中任选 k k k 个整数相加,可分别得到一系列的和。例如当 n = 4 n=4 n=4 k = 3 k=3 k=3 4 4 4 个整数分别为 3 , 7 , 12 , 19 3,7,12,19 3,7,12,19 时,可得全部的组合与它们的和为:

3 + 7 + 12 = 22 3+7+12=22 3+7+12=22

3 + 7 + 19 = 29 3+7+19=29 3+7+19=29

7 + 12 + 19 = 38 7+12+19=38 7+12+19=38

3 + 12 + 19 = 34 3+12+19=34 3+12+19=34

现在,要求你计算出和为素数共有多少种。

例如上例,只有一种的和为素数: 3 + 7 + 19 = 29 3+7+19=29 3+7+19=29

输入格式

第一行两个空格隔开的整数 n , k n,k n,k 1 ≤ n ≤ 20 1 \le n \le 20 1n20 k < n k<n k<n)。

第二行 n n n 个整数,分别为 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn 1 ≤ x i ≤ 5 × 1 0 6 1 \le x_i \le 5\times 10^6 1xi5×106)。

输出格式

输出一个整数,表示种类数。

输入输出样例

输入 #1

4 3
3 7 12 19

输出 #1

1

提示

【题目来源】

NOIP 2002 普及组第二题

1.题意解析

    我在【题解】【搜索】—— [NOIP2002 普及组] 选数中,就已经讲解过了子集枚举和深搜两种方法。在这里,我们只详细介绍介绍子集枚举的方法。

    根据上文,我们定义一个变量U=1<<n, 那么U-1表示全集。定义一个变量S,表示当前枚举的集合。

    在algoriithm头文件中,定义了一个__builtin_popcount函数,用来统计一个数二进制形式中1的个数。我们可以用它找到一个含有k个元素的子集,即 k k k元子集。

    然后定义一个变量sum=0,用来统计当前 k k k元子集的和。根据上文,我们可以这样判断全集中的第i个数是否被选中:

for(int i=1;i<=n;i++)
    if(S&1<<(i-1))//如果这个元素属于k元子集
        sum+=a[i];

    最后定义一个check函数,用来判断和是否是质数就行了。

2.AC代码

#include<bits/stdc++.h>
using namespace std;
int a[30];
bool check(int x)//判断是否是质数的函数 
{
    if(x<2)return 0;
	for(int i=2;i*i<=x;i++)
	    if(x%i==0)
	        return 0;
	return 1;
}
int main()
{
	int n,k,ans=0;
	cin>>n>>k;
	for(int i=1;i<=n;i++)
	    cin>>a[i];
	int U=1<<n;//U-1即为全集
	for(int S=0;S<U;S++)//从空集枚举到全集
		if(__builtin_popcount(S)==k)//找到k元子集
		{
			int sum=0;//k元子集之和 
			for(int i=1;i<=n;i++)
			    if(S&1<<(i-1))//如果这个元素属于k元子集
			        sum+=a[i];
			if(check(sum))//是质数结果就+1
			    	ans++;
		}
	cout<<ans;
	return 0;
}

喜欢就订阅此专辑吧!

【蓝胖子编程教育简介】
蓝胖子编程教育,是一家面向青少年的编程教育平台。平台为全国青少年提供最专业的编程教育服务,包括提供最新最详细的编程相关资讯、最专业的竞赛指导、最合理的课程规划等。本平台利用趣味性和互动性强的教学方式,旨在激发孩子们对编程的兴趣,培养他们的逻辑思维能力和创造力,让孩子们在轻松愉快的氛围中掌握编程知识,为未来科技人才的培养奠定坚实基础。

欢迎扫码关注蓝胖子编程教育
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝胖子教编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值