算法训练 数字三角形
时间限制:1.0s 内存限制:256.0MB
问题描述
(图3.1-1)示出了一个数字三角形。 请编一个程序计算从顶至底的某处的一条路
径,使该路径所经过的数字的总和最大。
●每一步可沿左斜线向下或右斜线向下走;
●1<三角形行数≤100;
●三角形中的数字为整数0,1,…99;
.
(图3.1-1)
径,使该路径所经过的数字的总和最大。
●每一步可沿左斜线向下或右斜线向下走;
●1<三角形行数≤100;
●三角形中的数字为整数0,1,…99;
.
(图3.1-1)
输入格式
文件中首先读到的是三角形的行数。
接下来描述整个三角形
接下来描述整个三角形
输出格式
最大总和(整数)
样例输入
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
样例输出
30
分析:当我看到这道题的时候发现这是一个动态决策问题,一开始直接使用了回溯法求解最优路线。但后来思考其中原理便发现其效率较低,相同的子问题被多次重复计算。下面是我一开始时用回溯法编写的代码。
#include <stdio.h>
#include <string.h>
#define max(x,y) ((x)>(y)?(x):(y))
int a[100][100];
int digitTri(int i, int j, int n);
int main()
{
int n;
scanf("%d", &n);
memset(a, 0, sizeof(a));
for(int i = 0; i < n; ++i)
for(int j = 0; j <= i; ++j)
scanf("%d", &a[i][j]);
printf("%d\n", digitTri(0, 0, n));
return 0;
}
int digitTri(int i, int j, int n)
{
return a[i][j] + (i == n ? 0 : max(digitTri(i+1, j, n), digitTri(i+1, j+1, n)));
}
分析:回溯法的顺序是从头部到尾部,你会发现处于中间的部分进行了多余的重复计算,而应该怎么进行解决呢?容易发现,其实反过来按照尾部到头部的顺序可以避免其中多余计算。于是我之后便采用了对边界进行处理之后的递推计算。代码如下:
#include <stdio.h>
#include <string.h>
#define max(x,y) ((x)>(y)?(x):(y))
int a[100][100];
int b[100][100];
int main()
{
int i, j, n;
scanf("%d", &n);
memset(a, 0, sizeof(a));
for(i = 0; i < n; ++i)
for(j = 0; j <= i; ++j)
scanf("%d", &a[i][j]);
for(i = 0; i < n; ++i)
b[n-1][i] = a[n-1][i];
for(i = n-1; i >= 0; --i)
for(j = 0; j <= i; ++j)
b[i][j] = a[i][j] + max(b[i+1][j], b[i+1][j+1]);
printf("%d\n", b[0][0]);
return 0;
}