P2870 [USACO07DEC]Best Cow Line G

链接

题目链接

题解

显然像 P1430 序列取数 这样的区间DP做法是行不通的,再考虑一下贪心,可以发现在 s [ l ] = s [ r ] s[l]=s[r] s[l]=s[r] 的时候无法直接作出选择,需要一直比较 s [ l + i ] , s [ r − i ] s[l+i],s[r-i] s[l+i],s[ri] 直到出现不同为止,最坏复杂度是 O ( n 2 ) O(n^2) O(n2) 的,依旧无法接受。如何快速判断一个从 l l l 开始的子串和另一个以 r r r 结尾的子串的反串的字典序大小?将原串的反串拼接到原串后面,然后跑一遍后缀排序即可。

为了让反串中的字符不被算在原串的后缀中,可以在原串末尾先插入一个未出现过的字符用来区分。但是画图模拟一下可以发现,如果真的出现这样的情况似乎并不会对答案产生影响,事实上不加这个字符也可以AC。

代码

#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e6 + 50;
int n;
char s[maxn];
int sa[maxn], rk[maxn], oldrk[maxn << 1], id[maxn], px[maxn], cnt[maxn];
bool cmp(int x, int y, int w)
{
    return oldrk[x] == oldrk[y] && oldrk[x + w] == oldrk[y + w];
}
void getsa()
{
    int len = n * 2 + 1, m = 300;
    for (int i = 1; i <= len; ++i)
        ++cnt[rk[i] = s[i]];
    for (int i = 1; i <= m; ++i)
        cnt[i] += cnt[i - 1];
    for (int i = len; i >= 1; --i)
        sa[cnt[rk[i]]--] = i;
    for (int w = 1, p, i; w < len; w <<= 1, m = p)
    {
        for (p = 0, i = len; i > len - w; --i)
            id[++p] = i;
        for (i = 1; i <= len; ++i)
            if (sa[i] > w)
                id[++p] = sa[i] - w;
        memset(cnt, 0, sizeof(cnt));
        for (i = 1; i <= len; ++i)
            ++cnt[px[i] = rk[id[i]]];
        for (i = 1; i <= m; ++i)
            cnt[i] += cnt[i - 1];
        for (i = len; i >= 1; --i)
            sa[cnt[px[i]]--] = id[i];
        memcpy(oldrk, rk, sizeof(rk));
        for (p = 0, i = 1; i <= len; ++i)
            rk[sa[i]] = cmp(sa[i], sa[i - 1], w) ? p : ++p;
    }
}
vector<char> ans;
signed main()
{
    scanf("%d", &n);
    for (int i = 1; i <= n; ++i)
        scanf("%s", s + i);
    s[n + 1] = '\0';
    for (int i = 1; i <= n; ++i)
        s[n * 2 + 2 - i] = s[i];
    getsa();
    int l = 1, r = n, cnt = 0;
    while (l < r)
    {
        if (s[l] < s[r])
            ans.emplace_back(s[l++]);
        else if (s[l] > s[r])
            ans.emplace_back(s[r--]);
        else
        {
            if (rk[l] < rk[2 * n + 2 - r])
                ans.emplace_back(s[l++]);
            else
                ans.emplace_back(s[r--]);
        }
    }
    ans.emplace_back(s[r]);
    for (auto ch : ans)
    {
        cnt++;
        putchar(ch);
        if (cnt % 80 == 0)
            putchar('\n');
    }
    return 0;
}
题目描述 有一个长度为 $n$ 的书架,每本书有一个高度 $h_i$。现在你可以进行以下两种操作: - 将一本书放在书架的最左边或最右边,花费为 $c_1$。 - 将一本高度为 $h_i$ 的书放在一本高度为 $h_j$ 的书的上面,花费为 $c_2$。 现在你需要将书架上的书按照高度从小到大排列,求最小花费。 输入格式 第一行包含三个整数 $n,c_1,c_2$。 第二行包含 $n$ 个整数 $h_i$。 输出格式 输出一个整数,表示最小花费。 数据范围 $1\leq n\leq 200,1\leq c_1,c_2\leq 10^9,1\leq h_i\leq 10^9$ 输入样例 5 1 2 3 1 4 2 5 输出样例 6 算法1 (动态规划) $O(n^2)$ 首先考虑一个朴素的 dp,设 $f_{i,j}$ 表示前 $i$ 本书已经排好序,第 $i+1$ 本书放在第 $j$ 个位置的最小花费。 状态转移方程为: $$ f_{i,j}=\min\{f_{i-1,k}+c_1\}+\begin{cases}&\text{if }h_{i+1}>h_j\\c_2&\text{otherwise}\end{cases} $$ 其中 $k$ 取遍 $1\sim i$,表示将第 $i+1$ 本书放在第 $k$ 个位置。 时间复杂度 $O(n^3)$ C++ 代码 算法2 (单调队列优化) $O(n^2)$ 考虑优化上述 dp,发现状态转移方程中的 $\min$ 操作可以用单调队列优化,具体来说,我们维护一个单调递增的队列 $q$,其中 $q_i$ 表示第 $i$ 个位置的最小花费,那么对于状态 $f_{i,j}$,我们只需要找到 $q$ 中第一个大于等于 $f_{i-1,k}+c_1$ 的位置 $p$,然后 $f_{i,j}=q_p+\begin{cases}&\text{if }h_{i+1}>h_j\\c_2&\text{otherwise}\end{cases}$。 时间复杂度 $O(n^2)$ C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值