概率论

概率论

概率论的基本概念

随机试验

相同条件下可重复进行试验
结果是随机的,但试验不是偶然的
事先明确所有可能结果、每次试验有多种可能结果
样本空间(结果的全集)是确定的,随机事件(单次试验的所有可能结果)是样本空间的子集,随机事件可大可小
事先不知道哪种结果会出现
结果是哪个样本点(单次试验的结果)无法确定
样本空间确定、随机事件不确定,具体是哪个样本点也不确定。

样本空间、随机事件

随机试验的所有可能结果组成样本空间,单个结果是样本点
样本空间的子集为随机事件
含一个样本点的随机事件 基本事件
含样本空间所有样本点 必然事件
空集 不可能事件
事件间的运算
A-B=A-AB=AB*
分配律对交和并都适用
德摩根律
互斥是没有交集、互逆(对立)是没有交集且和为全集

频率与概率

概率是正数
必然事件概率为1
不可能事件概率为0
有限个互不相容事件概率可相加
存在包含关系的事件,概率有大小关系,差事件的概率等于概率之差
和事件的概率等于单个事件概率的和减去两两事件的概率加上三三事件的概率

古典概型(等可能概型)

样本空间只有有限个元素
每个基本事件等可能性发生
古典概型概率等于事件包含基本事件数/样本空间中基本事件总数
放回抽样
抽取结果整体情况
  • 每次抽取都独立,最后的概率是第一次概率的幂次方的形式(如果每次要求不一样,则考虑不同要求的插空排序)
每一次抽取结果的情况
  • 乘法定理,条件概率
某一次抽取结果的情况
不放回抽样
关注某次结果
关注整体结果
  • 每种条件的组合数相乘/总的组合数
  • 超几何分布
1~2000不能整除问题
被A整除 P=2000/A取结果最小整数/2000
被B整除 P=2000/B取结果最小整数/2000
被AB整除 P=2000/AB取结果最小整数/ 2000
最终结果 P=1-Pa-Pb+Pab
盒子多人少时,自己选盒子问题
盒子N多于人数n时,从N选n个出来全排列/N的n次幂
盒子少人多时,人的分配问题
先考虑顺序排特殊人,再乘普通人在每个盒子情况的组合数相乘/每个盒子情况的组合数相乘
  • 若是平均分配,则记住14 页的公式,15个人平均分配到三个班,15的阶乘/5的阶乘的三次方
  • 若是不平均分配,12个人,3个班,255,12的阶乘/2的阶乘✖️5的阶乘的平方

条件概率

P(B|A)=P(AB)/P(A)
对于同一个条件下的互不相容事件,概率可以相加
相加的公式与和事件概率的计算相同,一加二减三加
如果是抽取问题就按抽取的两种情形来算,注意条件概率的样本空间会变
乘法定理:A确定 (B|A)就确定 (C|AB)就确定,(ABC)就确定
打飞机,摔玻璃等结果只有2种情况的连续问题,用乘法公式展开
全概率公式
P(A)=P(B1A)+P(B2A)+…
贝叶斯公式
单因素占全概率的比例
P(Bi|A)=P(ABi)/P(A)

独立性判定

两两独立,积事件概率可以分为事件概率的乘积。三三独立,则要在三个事件两两独立的基础上再满足乘积事件的概率等于事件概率的乘积
独立看的是乘积事件的拆分,和事件的概率要用加法公式
常与超几何分布一起

随机变量及其分布

随机变量

用以描述事件
和基本事件的关系是一对多、多对一(即随机变量包含基本事件、复合事件)
取值随实验结果而定,事先不知道他取什么值,且取值有一定的概率

离散型随机变量及其分布律

取值是有限个或者可列无限个的随机变量
分布律可以用P(X=xk)=pk,k=1,2…表示,也可以用表格来表示,表格分两行,上一行列出离散随机变量的每个取值,下一行列出其对应的概率
(0-1)分布
随机变量只有0,1两个取值
设X为1的概率为p,0的概率为q,则q=1-p
  • 关注单次试验,事件是否发生
二项分布
n重伯努利实验
事件只有发生/不发生的情况,每次实验事件发生的概率不变,每次实验的结果互不影响
  • 放回取样是伯努利实验,不放回不是
关注n重实验,事件发生某些次数的概率
X~b(n,p)
  • 其概率分布呈正态样
    • 当n很大,p很小时,可以用泊松分布来近似,λ=np(n大于等于20,p小于等于0.05)
泊松分布
关注x取不同值的概率
P(X=k)=e的λ次幂的级数展开在κ的取值(λ的k次幂除以k的阶乘)乘e的-λ次幂
  • X~π(λ)
χ2 分布
Y=X2 x为标准正态分布

随机变量的分布函数

分布函数F(x)=P(X小于等于x)
F(x2)-F(x1)可以求左开右闭区间的概率
不减函数取值在 0~1间
负∞取值为0,正∞取值为1
右连续(x+0)=(x),故x的定义域一定是左闭右开

连续型随机变量及其概率密度

不可能事件的概率为0,反之不成立
均匀分布
密度为区间长的倒数
指数分布
密度为1/θ乘 e的 -x/θ次幂
分布函数是1-e的-x/θ次幂
  • 无记忆性
正态分布
概率密度为1/根号2πδ乘e的的-(x-μ)方/2δ方
X~N(μ,δ方)
  • X-μ/δ~N(0,1)
    • μ-3ς以内,概率为99.74

随机变量的函数分布

离散
把Χ取值代入函数得到目标变量取值,重写分布律
连续
已知X密度,求Y密度
FY(y)写成FX(y),关于y求导,得到 Y的概率密度为fx(y)乘函数的导数, 区间是用函数代替x的范围

多维随机变量及其分布

二维随机变量

联合分布函数表示的区域是所取点左下方左下方五穷矩形累加概率
单负∞,双负∞,双正∞ 的概率和和为0
单正∞是边缘分布函数
离散型概率直接看,连续型计算曲顶柱体的体积
离散型分布函数直接加,连续型计算变上限积分(负∞到x,负∞到y)

边缘分布

对密度函数密度函数中的 单变量求无穷积分另一变量变量求变上限积分 得到 另一单变量 概率密度,对密度求 单变量的 无穷积分 ,得到单变量的密度

条件分布

离散型直接联合分布律 /边缘分布律,连续型则先求条件概率密度(联合密度/边缘密度)再对所求变量求变上限积分

相互独立的随机变量

边缘概率密度 的乘积的等于联合概率密度
二维正态随机变量相互独立的充要条件是ρ=0

两个随机变量的函数分布

有限个相互独立的正态随机变量的线性组合仍然服从正态分布
Γ分布的可加性
Z=X+Y
概率密度为X,Y密度卷积,但是积分上下限为∞
Z=Y/X的分布
概率密度为|X|乘f(x,Xz)再对x积分
Z=XY的分布
概率密度为1/|X|f(小,z/x)
max的分布
分布函数到概率密度
F=FF
min的分布
分布函数到概率密度
F=1-(1-F)(1-F)

随机变量的数字特征

数学期望(均值)

离散
对随机变量和概率的乘积求和
连续
概率密度乘随机变量求积分
随机变量函数的期望,把随机变量换成函数再积分
与第三章密度,分布函数关系密切,记住几大期望求解线性、齐次性定理

方差

(X-E(x))平方的期望
E(X方)-E(X)方
标准化变量,跟标准正态分布如出一辙,期望为0,方差为1

协方差及相关系数

矩、协方差矩阵

大数定律及中心极限定理

大数定律

弱大数定理(辛钦定理)
独立同分布且具有均值μ的随机变量,当n很大时,随机变量的算术平均值近似于该分布的期望
伯努利大数定理
  • n足够大,频率近似等于概率,定理表达形式同切比雪夫不等式

中心极限定理

独立同分布
随机变量之和的标准化变量的分布函数等于标准正态分布分布函数
算术平均变量 服从 μ,σ方/n的正态分布
李雅普诺夫定理
独立但不同分布
n很大,随机变量之和的标准化变量符合标准正态分布
棣莫弗拉普拉斯定理

样本及抽样分布

随机样本

直方图和箱线图

抽样分布

参数估计

点估计

基于截尾样本的最大似然估计

估计量的评选标准

区间估计

正态总体均值与方差的区间估计

(0-1)分布参数的区间估计

单侧置信区间

假设检验

假设检验

正态总体均值的假设检验

正态总体方差的假设检验

概率一致,都为随机事件的基本事件数/样本空间的基本事件数(对于条件概率,样本空间会变化)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值