Luogu P3805 manacher算法模板题
Description
给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度。
Input
一行小写英文字符a,b,c...y,z组成的字符串S。
Output
一个整数表示答案。
Simple Input
aaa
Simple Output
3
Hint
字符串长度len<=11000000。
Solution
Manacher算法把O(n^2)的复杂度降低到了O(n),实现手段是先预处理字符串,给每个字符左右加上一个字符,避免分类讨论,然后p数组的含义是以i为中心的最长回文串的半径长度,然后最后求长度是2*p[i]-1-p[i],化简一下就是p[i]-1,然后mx-i的意义其实是因为mx的定义是这个串最右端的位置+1,然后最右端的位置就会变成mx-1-i+1,化简一下就是mx-i了。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#define maxn 40000005
#define inf 0x3f3f3f3f
using namespace std;
int p[maxn],mx=1,id=1,lenofs=2,ans=-inf;
char S[maxn],s[maxn];
void set_s(){
int lenOfS=strlen(S);
s[0]='$';
s[1]='#';
for(int i=0;i<lenOfS;i++){
s[lenofs++]=S[i];
s[lenofs++]='#';
}
s[lenofs]='&';
}
void Manacher(){
set_s();
for(int i=1;i<lenofs;i++){
p[i]=mx>i?min(mx-i,p[id*2-i]):1;
while(s[i-p[i]]==s[i+p[i]]){
p[i]++;
}
if(mx<i+p[i]){
id=i;
mx=i+p[i];
}
ans=max(ans,p[i]-1);
}
}
int main(){
scanf("%s",S);
Manacher();
printf("%d",ans);
return 0;
}