Problem:
有 n 个不同的数列成一个队列,现在可以若干次选择两个数交换位置,每个数只能被交换
一次。现在 L想知道能得到多少种不同的队列。
输入
第一行是一个整数 T,表示有 T组数据
接下来 T行,每一行是一个整数N表示数量
输出
T行,每行一个正整数表示这组数据的答案(模1e9+7的值)
1<=N<=1000 000,1<=T<=100 000
Solution:
数据挺吓人的,试图找了下规律,什么都没有。
肯定不能对于每行都在线算的,应该是一个O(n)预处理。
考虑dp,设dp[i]为i个数的答案。
对于每一个数
1.不与前面的任何一个数交换(+dp[i-1])
2.与前面的某一个数交换,可以和i-1个人交换,每次交换过后剩下的i-2个人可以随意搭配(+dp[i-2]*(i-1))
Code
#include<bits/stdc++.h>
#define N 1000005
const int mod=1000000007;
using namespace std;
int dp[N];//第i个数之前的方案数
inline void init()
{
dp[0]=dp[1]=1;
for(int i=2;i<=N;i++)
{
dp[i]=dp[i-1]+(long long)(i-1)*dp[i-2]%mod;
dp[i]%=mod;
}
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(NULL),cout.tie(NULL);
init();
int t;
cin>>t;
while(t--)
{
int x;
cin>>x;
cout<<dp[x]<<'\n';
}
return 0;
}