肯定要先跑一次最短路
题目中的k 相当于允许我们走k距离的“冤枉路”
回想之前有些题是如何判断哪些边是属于最短路上的 当dis[now]+edge[u].val==dis[vis] 这条边就在最短路上
类似的 我们可以得出 dis[now]+edge[u].val-dis[vis]就是这一次走的“冤枉路”的长度
到这个地方搜索的策略已经很明显了 dfs(now,remain)表示当前当前点为now 还剩remain的冤枉路可以走
边界条件:remain<0
然后发现这玩意儿不用标记vis数组 因为就算有环 remain会一直减下去直到<0 还可以记忆化一下
不过无穷多的情况肿么判?
可以这样想 为什么数据会给你有没有0边?
回忆最短路计数就会问你有没有无穷多条满足要求的路 这种情况只有可能是有0环存在
在这道题里判0环异常容易 假如进入了0环 那肯定会绕了一圈后 又回到当前点 且remain不变
因此标记一下就好
另外 还有一个坑点 这是有向图 很有可能有些点无法到达终点
因此还要反向搜出那些不能到达的
#include<bits/stdc++.h>
#define N 100005
#define M 200005
#define INF 0x3f3f3f3f
using namespace std;
template<class T>
inline void read(T &x)
{
x=0;
static char ch=getchar();
whil