【NOIP 2017】逛公园(最短路+记忆化搜索)

博客探讨了如何利用最短路算法解决NOIP 2017年的一个问题,其中允许走一定距离的“冤枉路”。通过判断dis[now]+edge[u].val-dis[vis]来确定路径是否包含在最短路上,并设计了一个dfs(now, remain)的搜索策略,其中remain表示剩余的冤枉路长度。遇到的挑战包括如何处理可能存在的0环以及无法到达终点的情况,解决方案包括记忆化搜索和标记0环的状态。" 130721124,9326786,深入理解ThreeJS中的矩阵变换,"['javascript', '前端开发', '3D图形学', '矩阵运算']
摘要由CSDN通过智能技术生成

肯定要先跑一次最短路

题目中的k 相当于允许我们走k距离的“冤枉路”

回想之前有些题是如何判断哪些边是属于最短路上的 当dis[now]+edge[u].val==dis[vis] 这条边就在最短路上

类似的 我们可以得出 dis[now]+edge[u].val-dis[vis]就是这一次走的“冤枉路”的长度

到这个地方搜索的策略已经很明显了 dfs(now,remain)表示当前当前点为now 还剩remain的冤枉路可以走

边界条件:remain<0

然后发现这玩意儿不用标记vis数组 因为就算有环 remain会一直减下去直到<0 还可以记忆化一下

不过无穷多的情况肿么判?

可以这样想 为什么数据会给你有没有0边?

回忆最短路计数就会问你有没有无穷多条满足要求的路 这种情况只有可能是有0环存在

在这道题里判0环异常容易 假如进入了0环 那肯定会绕了一圈后 又回到当前点 且remain不变

因此标记一下就好

另外 还有一个坑点 这是有向图 很有可能有些点无法到达终点

因此还要反向搜出那些不能到达的

#include<bits/stdc++.h>
#define N 100005
#define M 200005
#define INF 0x3f3f3f3f
using namespace std;
template<class T>
inline void read(T &x)
{
    x=0;
    static char ch=getchar();
    whil
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值