题目描述
某区域内由n+1条水平道路和n+1条竖直道路等距交错而成,每到雨季,有一半的区域被淹。
现在只有左上三角区域受到影响,也就是说可以在副对角线以下的道路畅通行走。算出有多少种前往机房的最短路线。
区域可以看做左下顶点为PIPI的寝室(0,0),右上顶点为机房(n,n)的方形区域。
输入
多组数据。每组数据只有一行,为一个整数n(1 ≤n ≤30)。
输出
每组数据输出一行,即由寝室到机房的最短路线方案数。测试数据保证结果为64位整数。
示例
输入:4
输出:14
思路
当且仅当每一步都是向右或向上时,为最短路径。
预打表,开一个31*31的矩阵res,在所有输出前从(0,0)点开始,向上、右两个方向进行广度优先搜索至(30,30),每访问到一个结点(x,y),就res[x,y]++。
每处理一个输出n,只需返回res[n,n]。
注意:根据本题输入范围,应使用long long
实现
#include <iostream>
#include <queue>
/* run this program using the console pauser or add your own getch, system("pause") or input loop */
using namespace std;
#define MAXN 30
long long matrix[MAXN+1][MAXN+1];
int main(int argc,char** argv){
int n;
for(int y=0;y<=30;y++){
matrix[0][y] = 1;
}
for(int x=1;x<=30;x++){
matrix[x][x] = matrix[x-1][x];
for(int y=x+1;y<=30;y++){
matrix[x][y] = matrix[x-1][y]+matrix[x][y-1];
}
}
while(scanf("%d",&n)!=EOF){
printf("%lld\n",matrix[n][n]);
}
return 0;
}