题目大意:给你一些珠子,每个珠子都会有两个数值,珠子与珠子之间能相连当且仅当它们的连接处数值相等,
问你能不能由这些珠子组成一条项链,即所有珠子都相连起来(包含头与尾)。
题目分析:这是一道关于欧拉回路的题目,我们可以把珠子与珠子连接处的两个数值抽象成一个点,然后可以试试几个样例发现这是 一条点与点之间只连一条线且从头到头的路径,是符合欧拉路径的定义的。
判断图中是否存在欧拉路径有两个要素:一、路径中所有点的度数都为偶数。二、图为连通。
这题默认图为连通,那么判定路径中的度数为偶数就可以了。
最后递归输出路径就可以了。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<vector>
using namespace std;
int vis[100][100],deg[100],cnt;
int N,temp;
int record[1050];
void dfs(int x)
{
for(int i=1;i<=50;i++)
{
if(vis[i][x]>0)
{
vis[x][i]--;
vis[i][x]--;
dfs(i);
printf("%d %d\n",i,x);
}
}
}
int main()
{
int T,case1=0;
scanf("%d",&T);
while(T--)
{
cnt=0;
memset(vis,0,sizeof(vis));
memset(deg,0,sizeof(deg));
temp=0;
scanf("%d",&N);
int num=0;
for(int i=0;i<N;i++)
{
int a,b;
scanf("%d%d",&a,&b);
vis[a][b]++;
vis[b][a]++;
deg[a]++;
deg[b]++;
}
for(int i=1;i<=50;i++)
{
if(deg[i]&1)
num++;
}
printf("Case #%d\n",++case1);
if(num==0)
{
for(int i=1;i<=50;i++)
dfs(i);
}
else
printf("some beads may be lost\n");
if(T!=0)
printf("\n");
}
return 0;
}