介绍
插入排序是一种简单直观的排序算法,适用于小规模数据集。其基本思想是通过构建有序序列,对于未排序数据,逐个插入到已排序的部分中。插入排序的时间复杂度为 (O(n^2)),适用于部分有序的数据集。
算法步骤
插入排序的基本步骤如下:
- 从第一个元素开始,该元素可以认为已经被排序。
- 取出下一个元素,在已经排序的元素序列中从后向前扫描。
- 如果已排序元素大于新元素,将已排序元素移到下一位置。
- 重复步骤3,直到找到已排序的元素小于或等于新元素的位置。
- 将新元素插入到该位置后。
- 重复步骤2-5,直到整个数组排序完成。
动图图解
插入排序的过程可以通过动图来形象地展示,让我们看一下下面的动图:
实例步骤
考虑以下整数数组:[5, 3, 8, 4, 2]。
- 初始状态: 第一个元素 5 被认为是已排序的,因为它是数组的第一个元素。
- 插入 3: 将 3 与 5 比较,发现 3 小于 5,所以将 5 向右移动一个位置。此时数组为 [3, 5, 8, 4, 2]。接着将 3 插入到合适的位置,即数组变为 [3, 5, 8, 4, 2]。
- 插入 8: 8 大于 5,因此不需要移动,直接插入到已排序的部分的末尾。数组变为 [3, 5, 8, 4, 2]。
- 插入 4: 将 4 与 8 比较,4 小于 8,将 8 向右移动一个位置。将 5 向右移动一个位置。此时数组为 [3, 4, 5, 8, 2]。接着将 4 插入到合适的位置,即数组变为 [3, 4, 5, 8, 2]。
- 插入 2: 将 2 与 8 比较,2 小于 8,将 8 向右移动一个位置。将 5 向右移动一个位置。将 4 向右移动一个位置。此时数组为 [2, 3, 4, 5, 8]。接着将 2 插入到合适的位置,即数组变为 [2, 3, 4, 5, 8]。
经过这一系列操作,数组已经完成排序。
代码示例
C语言代码
#include <stdio.h>
void insertionSort(int arr[], int n) {
int i, key, j;
for (i = 1; i < n; i++) {
key = arr[i];
j = i - 1;
// 将 arr[0..i-1] 中大于 key 的元素移到 arr[0..i] 中
while (j >= 0 && arr[j] > key) {
arr[j + 1] = arr[j];
j = j - 1;
}
arr[j + 1] = key;
}
}
int main() {
int arr[] = {5, 3, 8, 4, 2};
int n = sizeof(arr) / sizeof(arr[0]);
printf("原始数组:");
for (int i = 0; i < n; i++)
printf("%d ", arr[i]);
insertionSort(arr, n);
printf("\n排序后数组:");
for (int i = 0; i < n; i++)
printf("%d ", arr[i]);
return 0;
}
Python代码
def insertion_sort(arr):
for i in range(1, len(arr)):
key = arr[i]
j = i - 1
# 将 arr[0..i-1] 中大于 key 的元素移到 arr[0..i] 中
while j >= 0 and arr[j] > key:
arr[j
+ 1] = arr[j]
j -= 1
arr[j + 1] = key
# 示例
arr = [5, 3, 8, 4, 2]
print("原始数组:", arr)
insertion_sort(arr)
print("排序后数组:", arr)
总结
插入排序是一种简单直观的排序算法,适用于小规模数据集。通过逐步构建有序序列,对于未排序数据,逐个插入到已排序的部分中。插入排序的时间复杂度为 (O(n^2)),适用于部分有序的数据集。虽然不如快速排序和归并排序等高级算法在大规模数据集上的性能好,但在某些情况下插入排序仍然是一个简单有效的选择。