蓬莱小课:数据分析师常用的8个分析方法,你最了解哪个?

本文介绍了数据分析师常用的8种分析方法:数据看板、维度分解、用户分群、漏斗分析、行为轨迹、留存分析、A/B测试和数学建模。这些方法在提升决策效率、用户运营和产品优化方面发挥关键作用。通过实例解析,帮助读者掌握数据分析的实用技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据分析对于企业商业价值的提升起到了至关重要的作用。今天,小编来给大家分享数据分析干货知识——8种常见的数据分析方法。学会后做数据分析事半功倍哦~

采用数字和趋势图进行数据信息的展示最为直观,从具体的数字和趋势走向中可以更好地得到数据信息,有助于提高决策的准确性和实时性。

比如将某app或某网站的uv、pv等指标统一汇总到一个数据看板上,进行实时更新。这样的一个数据看板使得数字和趋势一目了然,非常直观。

当单一的数字或趋势过于宏观时,我们可以通过不同维度对数据进行分解,以获取更加精细的数据洞察。在进行维度选择时,需要考虑此维度对于分析结果的影响。

比如某app的日活突然下降了,可以通过拆分新老用户、渠道、app版本、地区、设备等维度,发现问题所在,也就是将宏观的问题拆分成小的问题去聚焦问题所在。

用户分群即指针对符合某种特定行为或具有共同背景信息的用户,进行归类处理。也可通过提炼某一类用户的特定信息,为该群体创建用户画像。

例如使用同一app的用户可以按照地址进行用户群体的划分,可分为“北京”、“上海”、“杭州”等。由此便可进一步观察某一用户群体的一些行为或数据指标,如app使用时长,使用频度,购买次数、购买金额等,以此来创建该用户群体的画像。

用户分群的意义在于我们可以针对具有特定行为或特定背景的用户,进行针对性的用户运营和产品优化,比如对具有“放弃支付或支付失败”的用户进行对应优惠券的发放,以此来实现精准营销,大幅提高用户的支付意愿和成交量。

绝大部分商业变现的流程,都可归纳为漏斗。漏斗分析是常见的一种数据分析手段,比如常见的用户注册转化漏斗,电商下单漏斗。整个漏斗分析的过程就是用户从前到后转化的路径,通过漏斗分析可以得到转化效率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值