- 博客(46)
- 资源 (1)
- 收藏
- 关注
原创 从精神内耗到掌控感:一套管理压力的系统性方法
我们发现,关键的区别在于一种名为“有意识占用率”的概念:当我们被动地被失控的思绪所裹挟时,我们处于一种“低有意识占用率”的“精神空转”状态,这正是“有害压力”的根源;而当我们能主动地、有目的地引导自己的心智资源时,我们便进入了“高有意识占用率”的“高效行驶”状态,这能带来一种“有益的内在张力”,是成长和创造的源泉。这是一种更复杂的困境。这是最纯粹的精神内耗。其核心思想是,放弃一步到位的“艺术家幻想”,转而采用一种分步骤、低压力、重流程的“工匠模式”,有意识地将宏大、模糊的任务分解为具体、可控的行动。
2025-06-09 20:03:38
410
原创 普适意义下的论文
论文的核心在于“论”与“文”的结合。“论”指议论之意,包括明确的论点和支撑论点的论据,如计算机论文中针对问题提出的新算法及其理论分析和实验验证。“文”则强调规范化的行文结构,如引言、方法、结果等部分的逻辑布局,确保内容清晰、连贯。优秀的论文需兼具深刻的论证与规范的表达,二者相辅相成才能有效传递研究成果。
2025-05-25 02:10:04
472
原创 翻译:CyberMetric: A Benchmark Dataset based on Retrieval-Augmented Generation for Evaluating LLMs...
大型语言模型(LLMs)正越来越多地应用于从软件开发到网络威胁情报的各个领域。理解包括密码学、逆向工程和风险评估等主题在内的所有不同网络安全领域,即使对人类专家来说也是一项挑战。研究社区需要一个多样化、准确且与时俱进的数据集,以测试LLMs在网络安全领域的通用知识。为填补这一空白,我们推出了和,这是一系列多项选择题问答基准数据集,分别包含 80、500、2000 和 10,000 个问题。
2025-04-03 12:05:34
961
原创 翻译:CyKG-RAG: Towards knowledge-graph enhanced retrieval augmented generation for cybersecurity
近年来,网络安全威胁检测与分析已成为日益重要的研究领域。与其他领域一样,生成式人工智能(generative AI)和大语言模型(LLMs)的兴起为推进网络安全创造了新的机遇,但也突显了LLMs面临的一些关键挑战——包括幻觉问题、知识缺陷以及处理事实信息能力的不足。为了解决这些限制,检索增强生成(Retrieval Augmented Generation, RAG)——通过动态从外部来源检索相关信息以增强LLMs的能力——已在许多领域展现出潜力。
2025-04-03 12:05:09
1156
原创 翻译:VulScribeR: Exploring RAG-based Vulnerability Augmentation with LLMs
据我们所知,我们是第一个探索使用 LLMs 进行漏洞增强的研究团队。我们精心设计了三种具有不同策略的新型提示模板,并提出了一个全面的漏洞增强流水线,可用于大规模漏洞增强(每 1K 样本的成本低至 1.88 美元)。我们使用两种不同的 LLMs、三种 DLVD 模型和三个数据集进行了广泛的评估,证明了 VulScribeR 相较于最先进的基线(包括最新的最佳技术)的优越性。我们公开了源代码、实验结果和增强后的数据集,供未来研究使用 [1]。
2025-04-03 12:04:42
899
原创 翻译:MoRSE: Bridging the Gap in Cybersecurity Expertise with Retrieval Augmented Generation
检索器是一种识别并从知识库中检索相关信息或文档的组件。这一过程对于提供必要的上下文和内容至关重要,LLM 利用这些信息生成准确且有依据的答案 [35], [37]。知识库是一个存储信息的仓库,检索器从中查找相关数据或文档。这是系统检索上下文相关内容的基础,对于生成有依据且准确的答案至关重要 [38]。嵌入向量是文本的数值表示形式,为术语分配低维空间。在此背景下,语义相似的术语的嵌入向量表现出接近性,从而封装语义含义。这有助于在查询和知识库之间进行比较 [39]。上下文。
2025-04-03 12:04:14
818
原创 翻译:PENTESTGPT: Evaluating and Harnessing Large Language Models for Automated Penetration Testing
开发了一个全面的渗透测试基准。我们构建了一个强大且具有代表性的渗透测试基准,涵盖了HackTheBox和VulnHub等领先平台上的众多测试机器。该基准包含182个子任务,覆盖OWASP的十大漏洞,提供了公平且全面的渗透测试评估。据我们所知,这是该领域首个能够提供逐步进展评估和比较的基准。对LLMs在渗透测试任务中的能力进行全面评估。通过使用GPT-3.5、GPT-4和Bard等模型,我们的探索性研究严格调查了LLMs在渗透测试中的优势和局限性。
2025-04-02 10:33:43
1090
原创 翻译:Search-o1: Agentic Search-Enhanced Large Reasoning Models
Search-o1 框架通过将外部知识检索无缝集成到推理过程中,解决了大型推理模型(LRMs)的知识不足问题,同时保持了链式思维的一致性。如图 2 所示,我们对三种方法进行了比较分析:普通推理、代理检索增强生成(RAG)和我们提出的 Search-o1 框架。普通推理模式:考虑图 2(a) 中的例子,任务涉及确定三步化学反应最终产物中的碳原子数量。普通推理方法在遇到知识缺口(例如“反式肉桂醛的结构”)时表现不佳。在没有准确信息的情况下,模型必须依赖假设,可能导致后续推理步骤中出现连锁错误。代理 RAG。
2025-04-02 10:33:18
735
原创 翻译:Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning
高效获取外部知识和最新信息对于大型语言模型(LLMs)的有效推理和文本生成至关重要。检索增强和工具使用训练方法将搜索引擎视为工具,但缺乏复杂的多轮检索灵活性或需要大规模监督数据。在推理过程中提示具备推理能力的高级LLM使用搜索引擎并非最优选择,因为LLM无法学习如何最佳地与搜索引擎交互。本文介绍了SEARCH-R1,这是DeepSeek-R1模型的扩展版本,其中LLM仅通过强化学习(RL)学习在逐步推理过程中自动生成(多个)搜索查询并进行实时检索。
2025-04-02 10:32:49
765
原创 翻译:Spatial-RAG: Spatial Retrieval Augmented Generation for Real-World Spatial Reasoning Questions
我们提出的框架,空间检索增强生成(Spatial-RAG),如图2所示。Spatial-RAG由三个关键阶段组成:首先,为了构建空间候选集CsC_sCs,系统必须精确定义空间约束,然后检索满足这些约束的空间对象。如图2(稀疏空间检索)所示,我们通过将输入自然语言问题解析为空间SQL查询来实现这一点,该查询将在空间数据库上执行,以高效检索数据库中的相关空间对象。此过程详见第4.2节。其次,为了在整合文本信息的同时有效计算空间相关性fsqyf_s(q, y)fsqy。
2025-04-02 10:32:04
456
原创 翻译:Teams of LLM Agents can Exploit Zero-Day Vulnerabilities
LLM 智能体变得越来越复杂,尤其是在网络安全领域。研究人员已经表明,当给定漏洞描述和模拟的夺旗问题时,LLM 智能体可以利用现实世界的漏洞。然而,这些智能体在事先未知的现实世界漏洞(零日漏洞)上表现仍然较差。在这项工作中,我们展示了 LLM 智能体团队可以利用现实世界的零日漏洞。单独使用的智能体在探索多种不同漏洞和长程规划方面存在困难。为了解决这一问题,我们引入了 HPTSA,这是一种具有规划智能体的系统,该智能体可以启动子智能体。
2025-04-01 16:27:34
1069
原创 翻译:The Skeleton Keys: A Large Scale Analysis of Credential Leakage in Mini-apps
我们在配备64个CPU核心(2.3GHz)和206GB内存的服务器上对我们的数据集应用了KeyMagnet。我们成功分析了402,527个小程序,其余小程序因超时或AST解析错误而未能分析。平均而言,我们的分析每个小程序耗时23.6秒。结果显示,凭证泄露在“应用内应用”生态系统中普遍存在,检测到84,491个凭证泄露问题,涉及54,728个小程序。凭证泄露可能导致严重的安全隐患,例如劫持属于小程序服务器的所有用户账户、窃取小程序用户的敏感数据和恶意操纵小程序服务器的功能。
2025-04-01 16:27:04
681
原创 翻译:Using Retriever Augmented Large Language Models for Attack Graph Generation
随着现代系统复杂性的增加,通过有效的漏洞管理和威胁建模技术评估其安全态势的重要性也随之提升。在网络安全专业人士的工具库中,攻击图是一种强大的工具,它展示了系统中所有可能被对手利用以实现特定目标的潜在攻击路径。传统的攻击图生成方法依赖专家知识、手动整理以及计算算法,但这些方法可能由于漏洞和攻击手段的不断演变而无法覆盖整个威胁场景。本文探讨了利用大型语言模型(LLMs),如 ChatGPT,自动化生成攻击图的方法,通过智能地将通用漏洞和暴露(CVEs)根据其前置条件和效果进行链式组合。
2025-03-31 10:38:10
886
原创 翻译:Vul-LMGNNs: Fusing language models and online-distilled graph neural networks for code vulnerabil
代码语言模型(codeLMs)和图神经网络(GNNs)在代码漏洞检测中被广泛使用。然而,一个关键但经常被忽视的问题是,GNN 主要依赖于从相邻节点聚合信息,这限制了结构信息的传递到单层更新。在代码图中,节点和关系通常需要跨层信息传播才能完全捕捉复杂的程序逻辑和潜在的漏洞模式。此外,尽管一些研究利用 codeLMs 来补充 GNN 的代码语义信息,现有的集成方法尚未充分探索它们协同效应的潜力。
2025-03-31 10:37:31
965
原创 翻译:RAGFix: Enhancing LLM Code Repair Using RAG and Stack Overflow Posts
在软件工程中识别、定位和解决错误是一项具有挑战性且成本高昂的任务。解决软件错误的方法包括使用大型语言模型(LLM)进行代码分析与修复,以及旨在减轻难以解决的错误技术负担的自动化代码修复技术。我们提出了 RAGFix,它通过基于动态收集的 Stack Overflow 帖子的检索增强生成(RAG)来提升 LLM 在错误定位和代码修复方面的能力。这些帖子可以通过问答知识图谱(KGQA)进行搜索。我们在 HumanEvalFix 基准测试中针对 Python 使用相关闭源和开源模型评估了我们的方法。
2025-03-28 10:44:34
794
原创 翻译:RepoCoder: Repository-Level Code Completion Through Iterative Retrieval and Generation
仓库级代码补全的任务是基于仓库的更广泛上下文继续编写未完成的代码。然而,对于自动化代码补全工具来说,很难利用散布在不同文件中的有用信息。我们提出了RepoCoder,一个简单、通用且高效的框架来应对这一挑战。它通过结合基于相似性的检索器和预训练代码语言模型,在迭代检索生成管道中简化了仓库级代码补全的过程。RepoCoder有效地利用了仓库级信息进行代码补全,并具备在各种粒度级别上生成代码的能力。
2025-03-28 10:42:20
716
原创 翻译:RedAgent: Red Teaming Large Language Models with Context-aware Autonomous Language Agent
我们提出了基于代理的红队测试系统 RedAgent,以 1)通过从模型反馈中获取上下文信息生成情境感知越狱提示;2)持续学习利用在附加记忆缓冲区中自我反思的越狱策略。图 3 显示了 RedAgent 的架构,它由三个主要阶段组成。具体来说,在情境感知剖析阶段,Profile Constructor 感知目标 LLM 的特定上下文以制作情境感知的恶意目标(例如,引导目标 LLM 输出特洛伊木马的有害代码)。
2025-03-28 10:41:41
752
原创 翻译:In-depth Analysis of Graph-based RAG in a Unified Framework
基于图的检索增强生成(RAG)已被证明在将外部知识整合到大型语言模型(LLMs)中时非常有效,提升了其事实准确性、适应性、可解释性和可信度。文献中已经提出了多种基于图的RAG方法。然而,这些方法尚未在相同的实验设置下进行系统且全面的比较。在本文中,我们首先总结了一个统一框架,从高层次视角概括了所有基于图的RAG方法。随后,我们对代表性基于图的RAG方法进行了广泛比较,涵盖了从具体问题到抽象问题的一系列问答(QA)数据集,并评估了所有方法的有效性,提供了对基于图的RAG方法的深入分析。
2025-03-27 16:58:42
684
原创 翻译:PentestAgent: Incorporating LLM Agents to Automated Penetration Testing
PentestAgent 包含四个主要组件:侦察智能体、搜索智能体、规划智能体和执行智能体。
2025-03-27 12:26:01
1070
原创 翻译:Multi-role Consensus through LLMs Discussions for Vulnerability Detection
大型语言模型(LLMs)的最新进展突显了其在漏洞检测方面的潜力,而漏洞检测是软件质量保证的关键组成部分。尽管取得了这些进展,大多数研究仍局限于单一角色的视角,通常是测试人员,缺乏来自典型软件开发生命周期中不同角色(包括开发人员和测试人员)的多样化观点。为此,本文提出了一种多角色方法,利用LLMs模拟不同角色,重现现实中的代码审查过程,并通过讨论就代码中漏洞的存在及其分类达成共识。对该方法的初步评估表明,精确率提高了13.48%,召回率提高了18.25%,F1分数提高了16.13%。关键词—大型语言模型。
2025-03-27 11:00:43
847
原创 翻译:Automatically Write Code Checker-An LLM-based Approach with Logic-guided API Retrieval and ...
给定一个检查规则rrr和一组测试用例(也称为测试套件TTT),我们的任务是自动生成正确的代码检查器CfC_fCf(最终版本),以通过所有测试。GenrTCfGenrTCfAutoChecker 将整个生成过程分为两部分:初始检查器生成和迭代检查器生成。如图 5 所示,从测试套件中选择一个初始测试用例t0t_0t0来生成初始检查器C0C_0C0InitGenrt0C0InitGenrt0。
2025-03-27 09:00:00
1022
原创 翻译:LLM Agents can Autonomously Exploit One-day Vulnerabilities
大型语言模型(LLMs)在良性用途和恶意用途上都变得日益强大。随着其能力的提升,研究人员对其利用网络安全漏洞的能力越来越感兴趣。特别是,近期的一些工作已经对大型语言模型智能体自主攻击网站的能力进行了初步研究。然而,这些研究仅限于简单的漏洞。在本研究中,我们证明了大型语言模型智能体能够自主利用现实世界系统中的一日漏洞。为了展示这一点,我们收集了一个包含15个一日漏洞的数据集,其中一些漏洞在CVE描述中被归类为严重级别。
2025-03-26 11:15:40
971
原创 翻译:LaRA: Benchmarking Retrieval-Augmented Generation and Long-Context LLMs - No Silver Bullet ...
将外部知识有效整合到大型语言模型(LLMs)中,对于增强其能力并满足现实需求至关重要。检索增强生成(RAG)通过检索最相关的片段并将其引入LLMs,提供了一种实现这一目标的有效方法。然而,LLMs在上下文窗口大小方面的进步提供了另一种替代方案,这就引发了一个问题:RAG是否仍然是有效处理外部知识的必要手段?现有的一些研究对RAG与长上下文(LC)LLMs之间的比较得出了不一致的结果,这主要是由于基准设计的局限性所致。在本文中,我们提出了LaRA,一个专门设计用于严格比较RAG和LC LLMs的新型基准。
2025-03-26 11:03:45
1357
原创 翻译:Code Change Intention, Development Artifact and History Vulnerability: Putting Them Together ...
系统提示:你是一位专门研究软件开发生命周期的有帮助的软件开发助手,旨在帮助其他开发者理解软件组件(如补丁、问题报告、拉取请求等)的特性。用户提示:给你以下与提交相关的 GitHub 问题报告标题和正文信息(JSON 格式):{提交}。报告摘要报告目的报告影响以项目符号格式提供每个特性的分析。每个项目符号应以关键点开头,然后简要描述文本中的主要思想或事实。确保每个点简洁并捕捉其所总结的主要思想的本质。包含 1-3 个关键点。以下是期望的格式示例:报告摘要:[关键点]:<描述>
2025-03-25 15:24:44
646
原创 翻译:BitsAI-CR: Automated Code Review via LLM in Practice
代码审查在软件开发中仍然是一个关键但资源密集的过程,尤其是在大规模工业环境中更具挑战性。尽管大型语言模型(LLMs)在自动化代码审查方面展现出潜力,但现有的解决方案在精确性和实用性方面仍存在显著局限性。本文介绍了BitsAI-CR,这是一种创新框架,通过结合RuleChecker进行初步问题检测和ReviewFilter进行精确性验证的两阶段方法来增强代码审查。该系统基于一套全面的审查规则分类法构建,并实施了一种数据飞轮机制,通过结构化反馈和评估指标实现持续性能改进。
2025-03-25 12:29:22
865
原创 翻译:Augmenting Code Sequencing with RetrievalAugmented Generation (RAG) for Context-Aware Code...
高效代码生成需求的增长推动了对大型语言模型(LLMs)改进的研究。本项目提出了一种新颖的系统,旨在通过利用检索增强生成(RAG)、关联技术以及提示参数来提升代码生成能力。RAG通过整合外部知识来丰富代码输出,而关联方法则增强了模型将语言与现实世界上下文结合进行解释的能力。提示参数提供了灵活性,使基于用户偏好的定制化输出成为可能。这些方法在各种代码生成任务中得以实施和测试,最终实现了具有上下文相关性且准确的输出。
2025-03-25 12:20:53
682
原创 翻译:A RAG-Based Question-Answering Solution for Cyber-Attack Investigation and Attribution
在不断演变的网络安全领域,分析师必须紧跟最新的攻击趋势及有助于调查和溯源网络攻击的相关信息。在这项工作中,我们推出了首个问答 (QA) 模型及其应用,为网络安全专家提供关于网络攻击调查与溯源的信息支持。我们的 QA 模型基于检索增强生成(RAG)技术,并结合了大型语言模型(LLM),根据包含精心整理的网络攻击调查与溯源信息的知识库(KB)或用户提供的外部资源,回答用户提出的问题。
2025-03-24 13:24:40
1117
原创 翻译:Vul-RAG: Enhancing LLM-based Vulnerability Detection via Knowledge-level RAG
基准:我们构建了一个新基准数据集 PairVul,其中专门包含漏洞代码与看似相似但正确的代码对。初步研究:我们首次发现现有的基于学习的技术在理解和捕捉与漏洞相关的代码语义方面能力有限。技术:我们基于所提出的多维知识表示构建了一个漏洞知识库,并提出了一种新颖的知识级 RAG 框架 Vul-RAG 用于漏洞检测。评估:我们评估了 Vul-RAG,并发现由 Vul-RAG 生成的漏洞知识在自动化和人工漏洞检测中均具有实用性。
2025-03-24 12:49:39
872
原创 翻译:PropertyGPT: LLM-driven Formal Verification of Smart Contracts through Retrieval-Augmented ...
在本节中,我们介绍了 PropertyGPT 的整体设计,该工具利用 LLMs 的上下文学习(ICL)能力,将现有的人编写的属性迁移并生成用于形式化验证未知代码的定制属性。从高层来看,PropertyGPT 将一段目标智能合约代码作为输入,并最终生成其对应的属性以及验证结果。PropertyGPT 首先通过嵌入其对应的关键代码创建一个参考属性的向量数据库。需要注意的是,参考属性本身不会被嵌入,因为它们不是搜索关键字。给定一段待测试的目标代码(通常是一个函数),PropertyGPT 查询向量数据库以。
2025-03-24 11:13:20
1228
原创 翻译:REPOAUDIT: An Autonomous LLM-Agent for Repository-Level Code Auditing
代码审计是一种以发现漏洞为目标的代码审查过程。大型语言模型(LLMs)在此任务中展现了巨大的潜力,能够无需编译即可分析程序,并根据指定提示实现定制化的漏洞检测。然而,将LLMs应用于仓库级代码审计存在显著挑战。LLMs固有的上下文限制和幻觉问题可能导致漏洞报告的质量较低。同时,软件仓库的大规模性带来了巨大的时间和token成本,阻碍了在现实场景中的效率和可扩展性。本工作介绍了一种自主LLM智能体REPOAUDIT,旨在实现精确且高效的仓库级代码审计。
2025-03-21 16:44:07
1138
原创 翻译:ProveRAG: Provenance-Driven Vulnerability Analysis with Automated Retrieval-Augmented LLMs
传统的威胁分析方法通常涉及手动评估和静态数据库的使用,这既耗时又容易受到人为错误的影响。此外,尽管现有系统可以评估漏洞,但它们往往无法提供有效缓解所需的详细、可操作的见解。这一过程中的差距使安全团队迫切需要更先进的系统,能够评估威胁、生成全面的缓解场景,并记录其建议的证据。本研究的动机正是来源于这些挑战。RQ1:如何解决 LLMs 在持续出现的网络安全威胁中的时间限制?我们解决的一个关键问题是 LLMs 的时间限制。
2025-03-21 16:20:22
1102
原创 翻译:Advancing TTP Analysis-Harnessing the Power of Large Language Models with Retrieval Augmented ...
战术、技术与程序(TTPs)概述了攻击者利用漏洞的方法。在 MITRE ATT&CK 框架中,TTP 的解释对网络安全从业者来说可能具有挑战性,因为这需要假定的专业知识和复杂的依赖关系。与此同时,大型语言模型(LLMs)的进步促使了近期对其在网络安全操作中应用的研究热潮。然而,如何高效且恰当地使用 LLM 提供关键领域(如网络安全)的准确响应仍然是一个未解问题。这促使我们研究如何更好地利用两类 LLM:小规模仅编码器(例如 RoBERTa)和更大规模仅解码器(例如 GPT-3.5)的 LLM 来理解和总结
2025-03-21 15:56:18
746
原创 翻译:Large language models for software vulnerability detection: a guide for researchers on models ...
大型语言模型(LLMs)在软件漏洞检测与管理领域中,已成为变革性的工具,展现出识别、分析和缓解安全风险的复杂能力。本文深入探讨了LLMs的应用,审视其在革新传统软件漏洞检测方法中的作用。我们探索了多种类别的LLMs,例如基于transformers的双向编码器表示(BERT)和生成式预训练transformer(GPT),以及这些模型如何被用于提高漏洞检测的准确性和效率。本文回顾了LLMs如何被集成到现有的软件安全框架中,并综合了有关其在不同场景中表现的研究成果。文章提供了LLM方法如何补充静态分析和。
2025-03-21 14:43:00
857
原创 翻译文章:ReposVul: A Repository-Level High-Quality Vulnerability Dataset
开源软件(OSS)漏洞对软件安全性带来了巨大挑战,并对我们的社会构成了潜在风险。为了应对这一问题,大量研究工作致力于自动化漏洞检测,其中基于深度学习(DL)的方法被证明是最有效的[1]。纠缠的补丁:开发者可能在补丁中提交与漏洞修复无关的代码更改,导致补丁纠缠不清。缺乏跨过程漏洞:现有的漏洞数据集通常包含函数级和文件级漏洞,忽略了函数之间的关系,从而使方法无法检测跨过程漏洞。过时的补丁:现有数据集通常包含过时的补丁,这可能在训练过程中对模型产生偏差。
2025-03-19 13:24:20
1050
原创 翻译文章:VulEval: Towards Repository-Level Evaluation of Software Vulnerability Detection
基于深度学习(DL)的方法已被证明在软件漏洞检测中行之有效,并且具备大幅提升漏洞检测效率的潜力。当前的方法主要集中于单个函数的漏洞检测(即,函数内漏洞),而忽视了实践中更为复杂的跨函数漏洞检测场景。例如,开发人员通常通过程序分析来检测跨越代码库中多个函数的漏洞。此外,广泛使用的基准数据集通常仅包含函数内漏洞,导致对跨函数漏洞检测能力的评估尚未被充分探索。为缓解这些问题,我们提出了一种代码库级评估系统,名为 VulEval,旨在同时评估函数内和跨函数漏洞的检测性能。
2025-03-19 12:49:54
681
原创 翻译:Enhancing Security in Third-Party Library Reuse Comprehensive Detection of 1-day Vulnerability ..
图 3 展示了 VULTURE 检测因重用 TPL 而引入的 1-day 漏洞的工作流程。VULTURE 包括三个阶段:TPLFILTER 构建、TPL 重用识别和 1-day 漏洞检测。TPLFILTER 构建。VULTURE 使用 TPLFILTER 构建一个专为目标平台量身定制的独特数据库。该数据库由两个部分组成:组件部分和漏洞部分。组件部分包含 TPL 的详细信息(例如,TPL 名称、TPL 版本和代码信息),而漏洞部分则包括每个 TPL 的先前版本和当前版本中曾经存在或当前存在的漏洞信息。
2025-03-11 20:23:28
977
原创 解决报错 RuntimeError: one of the variables needed for gradient computation has been modified by an inpl
解决报错 RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.FloatTensor [16, 50]] is at version 3; expected version 2 instead. Hint: enable anomaly detection to find the operation that fail
2023-03-17 15:58:54
319
原创 获取网络中间几层的结果IntermediateLayerGetter()及源码分析
获取网络中间几层的结果IntermediateLayerGetter()及源码分析思想:先创建一个model ,然后把它传入IntermediateLayerGetter中,并传入一个字典,传入字典的key是model的直接的层,传入字典的value是返回字典中的key,返回字典的value对应的是model运行的中间结果。一个小技巧是,传入的字典期望是str–str,如果传入str–int,那么使用的方式和字典是一样的。注意:因为 model.named_children() 只能找到直接下一层的名
2021-11-08 15:57:59
1175
1
粘贴板小工具PasteHelperV1.0
2020-08-06
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人