Problem C: zbj的长跑
Time Limit: 1 Sec Memory Limit: 128 MB
Submit: 139 Solved: 99
[Submit][Status][Web Board]
Description
学校最近规定同学们每天必须参加锻炼,学校的分布为一张图,每两条大路的交点处都有一个打卡器,也就是说在n*m的图中,总共有n*m个打卡器,zbj不喜欢锻炼,所以他想提前准备一张路线图,让他跑的路程最短,那么问题来了,他现在想知道,他最少需要跑多少路呢?
zbj每次从(1,1)的寝室出发,显然他是要跑回来的...因为要回寝室睡觉啊!
3*3的地图如下,X处即为打卡点,zbj可以选择在相邻的两个点之间跑,路程为1km,他也可以选择穿过教学楼,抄近路,也就是从从(1,1)直接到达(2,2)
X X X
X X X
X X X
Input
多组输入数据,每组数据输入两个正整数n,m(1<=n,m<=1000)
Output
每组数据输出一个小数,表示zbj最少需要跑的路程,保留两位小数
Sample Input
2 2
3 5
Sample Output
4.00
15.41
HINT
这道题我感觉很有意思,需要画上好几个图我们才能发现规律,首先我们分析当n和m都是偶数的时候,打卡完每个点需要的距离为n*m , 当n或m为奇数或者n和m都是奇数时,打卡完每个点需要的距离为n*m-1+sqrt(2)。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
#include<cmath>
using namespace std;
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
if((n*m)%2==0)
printf("%d.00\n",n*m);
else
printf("%d.41\n",n*m);
}
return 0;
}