1. 树的定义
2. 树的性质和概念
3. 二叉树的定义与二叉排序树的基本操作
- 树的定义
树是一种“一对多”的数据结构,是n(n≥0)个结点的有限集,其中n=0时称为空树
- 树的性质
1.根节点唯一
2.结点n>1时,除去根结点的其他结点构成若干个互不相交的有限集T1,T2…,其中每一个集合又是一棵树,称为根的子树
3.结点拥有的子树数称为结点的度(Degree),度为0的结点称为叶子结点
树的度是树内各结点的度的最大值
4.结点的层数是从根开始定义起,根为第一层,根的孩子是第二层,以此类推。树中结点的最大层次称为树的深度(Depth)或高度
5.如果各子树看成从左至右不可互换的,则称为有序树,否则为无序树
森林是互不相交的树的集合,某个结点的子树可以看做是森林
以上来自https://www.cnblogs.com/DSNFZ/articles/7636469.html
http://blog.csdn.net/lining0420/article/details/76154942
- 二叉树的定义与基本操作
1.定义:每个结点的度不大于2的树为二叉树.
二叉排序树:左子树的结点值小于根节点,右子树的节点值大于根结点.
2.基本操作:插入,删除,查找
结点
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) { val = x; }
}
查找结点
public TreeNode search(TreeNode root,int value) {
if ( root==null ) {
return root;
} else {
if ( value>root.val ) {
return search(root.right, value);
} else if ( value==root.val ) {
return root;
} else {
return search(root.right, value);
}
}
}
增加结点
public TreeNode insert(TreeNode root,int value) {
if ( root==null ) {
TreeNode s = new TreeNode(value);
return s;
} else {
if ( value>root.val ) {
root.right = insert(root.right, value);
} else {
root.left = insert(root.left, value);
}
return root;
}
}
删除结点
public TreeNode delete(TreeNode root,int value ) {
if ( root!=null ) {
if ( value>root.val ) {
root.right = search(root.right, value);
} else if ( value==root.val ) {
if ( root.left==null && root.right==null ) {
return root = null;
} else if ( root.left!=null && root.right!=null ) {
TreeNode temp = root.left;
while ( temp.right!=null )
temp = temp.right;
delete(root,temp.val);
root.val = temp.val;
} else if ( root.left!=null ) {
return root.left;
} else {
return root.right;
}
} else {
root.left = search(root.left, value);
}
}
return root;
}