Day38 动态规划-完全背包2 | LeetCode 322. 零钱兑换, 279. 完全平方数

LeetCode 322. 零钱兑换

完全背包,且求组合数(非排列数

dp[j]: 找到 j 块钱所有的组合数

状态转移方程:dp[j] = min(dp[j], dp[j - coins[i]] + 1);

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        vector<int> dp(amount + 1, 0x3f3f3f3f);
        dp[0] = 0;
        for(int i = 0; i < coins.size(); i++){
            for(int j = coins[i]; j <= amount; j++){
                dp[j] = min(dp[j], dp[j - coins[i]] + 1);
            }
        }
        return dp[amount] == 0x3f3f3f3f ? -1 : dp[amount];
    }
};

LeetCode 279. 完全平方数

自己实现的一遍,求1-n之间的完全平方数浪费了太多时间和空间

class Solution {
public:
    int numSquares(int n) {
        //先求1-n间的完全平方数
        vector<int> perfect_square;
        for(int i = 1; i <= n; i++){
            if(sqrt(i) == floor(sqrt(i))){
                perfect_square.emplace_back(i);
            }
        }
        vector<int> dp(n + 1, INT_MAX);
        dp[0] = 0;
        for(int i = 0; i < perfect_square.size(); i++){
            for(int j = perfect_square[i]; j <= n; j++){
                dp[j] = min(dp[j], dp[j - perfect_square[i]] + 1);
            }
        }
        return dp[n];

    }
};

看卡哥是不用求的, 而是在遍历的时候直接算完全平方数

1.先遍历物品,

class Solution {
public:
    int numSquares(int n) {
        vector<int> dp(n + 1, INT_MAX);
        dp[0] = 0;
        for(int i = 1; i <= sqrt(n); i++){
            //先遍历物品
            for(int j = i * i; j <= n; j++){
                //再遍历背包
                dp[j] = min(dp[j], dp[j - i * i] + 1);
            }
        }
        return dp[n];
    }
};

2.先遍历背包

class Solution {
public:
    int numSquares(int n) {
        vector<int> dp(n + 1, INT_MAX);
        dp[0] = 0;

        for(int j = 1; j <= n; j++){
            //先遍历背包
            for(int i = 1; i * i <= j; i++){
                //再遍历物品
                dp[j] = min(dp[j], dp[j - i * i] + 1);
            }
        }
        return dp[n];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值