1.门牌制作
题面:
小蓝要为一条街的住户制作门牌号。
这条街一共有2020 位住户,门牌号从1 到2020 编号。
小蓝制作门牌的方法是先制作0 到9 这几个数字字符,最后根据需要将字符粘贴到门牌上,例如门牌1017 需要依次粘贴字符1、0、1、7,即需要1 个字符0,2 个字符1,1 个字符7。
请问要制作所有的1 到2020 号门牌,总共需要多少个字符2?
题解:
从1到2020,对每一个数字单独计算,从个位开始一个一个比较
#include<stdio.h>
#include<iostream>
#include<string>
#include<cmath>
#include<vector>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long LL;
int main()
{
int ans=0;
for (int i = 1; i <= 2020; i++)
{
int t = i;
while (t)
{
if (t % 10 == 2)
ans++;
t /= 10;
}
}
cout << ans;
return 0;
}
2.既约分数
题面:
如果一个分数的分子和分母的最大公约数是1,这个分数称为既约分数。
例如4/3,2/5,8/1,1/7都是既约分数。
请问,有多少个既约分数,分子和分母都是1 到2020 之间的整数(包括1和2020)?
题解:
先让a%b,如果余数为0,返回 b,否则继续用b对a%b求余;
判断余数是否为1
#include<stdio.h>
#include<iostream>
#include<string>
#include<cmath>
#include<vector>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long LL;
int gcd(int a, int b) {
if (a % b == 0)
return b;
else
return gcd(b, a % b);
}
int main()
{
int ans=0;
for (int i = 1; i <= 2020; i++)
{
for (int j = 1; j <= 2020; j++)
{
if (gcd(i,j)==1)
ans++;
}
}
cout << ans;
return 0;
}
3.蛇形填数
题面:
如下图所示,小明用从1 开始的正整数“蛇形”填充无限大的矩阵。
容易看出矩阵第二行第二列中的数是5。请你计算矩阵中第20 行第20 列的数是多少?
题解:
找规律,发现每次间隔数加4
#include<stdio.h>
#include<iostream>
#include<string>
#include<cmath>
#include<vector>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long LL;
int main()
{
int ans=1,n=4;
for (int i = 1; i < 20; i++)
{
ans += n;
n += 4;
}
cout << ans;
return 0;
}
4.七段码
题面:
小蓝要用七段码数码管来表示一种特殊的文字。
上图给出了七段码数码管的一个图示,数码管中一共有7 段可以发光的二极管,分别标记为a, b, c, d, e, f, g。
小蓝要选择一部分二极管(至少要有一个)发光来表达字符。在设计字符的表达时,要求所有发光的二极管是连成一片的。
例如:b 发光,其他二极管不发光可以用来表达一种字符。
例如:c 发光,其他二极管不发光可以用来表达一种字符。这种方案与上一行的方案可以用来表示不同的字符,尽管看上去比较相似。
例如:a, b, c, d, e 发光,f, g 不发光可以用来表达一种字符。
例如:b, f 发光,其他二极管不发光则不能用来表达一种字符,因为发光的二极管没有连成一片。
请问,小蓝可以用七段码数码管表达多少种不同的字符?
题解:
采用递归,列出所有可能的发光情况。
#include<stdio.h>
#include<iostream>
#include<string>
#include<cmath>
#include<vector>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long LL;
int ans;
int e[10][10], p[10], use[10];
void init()
{
e[1][2] = e[1][6] = 1;
e[2][1] = e[2][7] = e[2][3] = 1;
e[3][2] = e[3][4] = e[3][7] = 1;
e[4][3] = e[4][5] = 1;
e[5][4] = e[5][6] = e[5][7] = 1;
e[6][1] = e[6][5] = e[6][7] = 1;
}
int find(int x)
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
void dfs(int d)
{
if (d == 8)
{
for (int i = 1; i <= 7; i++)
p[i] = i;
for (int i = 1; i <= 7; i++)
for (int j = 1; j <= 7; j++)
if (e[i][j] && use[i] && use[j])
p[find(i)] = find(j);
int k = 0;
for (int i = 1; i <= 7; i++)
if (use[i] && p[i] == i)
k++;
if (k == 1)
ans++;
return;
}
use[d] = 1;
dfs(d + 1);
use[d] = 0;
dfs(d + 1);
}
int main()
{
init();
dfs(1);
printf("%d", ans);
}
5.跑步锻炼
题面:
小蓝每天都锻炼身体。
正常情况下,小蓝每天跑1 千米。如果某天是周一或者月初(1 日),为了激励自己,小蓝要跑2 千米。如果同时是周一或月初,小蓝也是跑2 千米。
小蓝跑步已经坚持了很长时间,从2000 年1 月1 日周六(含)到2020 年10 月1 日周四(含)。
请问这段时间小蓝总共跑步多少千米?
题解:
判断闰年,然后循环计算即可
#include<stdio.h>
#include<iostream>
#include<string>
#include<cmath>
#include<vector>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long LL;
int main()
{
int week=6, ans = 0;
int month[13] = { 0,31,28,31,30,31,30,31,31,30,31,30,31 };
for (int i = 2000; i <= 2020; i++)
{
if (i % 4 == 0)
month[2] = 29;
else
month[2] = 28;
for (int m = 1; m <= 12; m++)
{
for (int day = 1; day <= month[m]; day++)
{
ans++;
if (week > 7)
week = 1;
if (week == 1 || day == 1)
ans++;
week++;
if (i == 2020 && m == 10 && day == 1)
{
cout << ans;
return 0;
}
}
}
}
}
6.回文日期
题面:
2020 年春节期间,有一个特殊的日期引起了大家的注意:2020 年2 月2日。因为如果将这个日期按“yyyymmdd” 的格式写成一个8 位数是20200202,恰好是一个回文数。我们称这样的日期是回文日期。
有人表示20200202 是“千年一遇” 的特殊日子。对此小明很不认同,因为不到2 年之后就是下一个回文日期:20211202 即2021 年12 月2 日。
也有人表示20200202 并不仅仅是一个回文日期,还是一个ABABBABA型的回文日期。对此小明也不认同,因为大约100 年后就能遇到下一个ABABBABA 型的回文日期:21211212 即2121 年12 月12 日。算不上“千年一遇”,顶多算“千年两遇”。
给定一个8 位数的日期,请你计算该日期之后下一个回文日期和下一个ABABBABA 型的回文日期各是哪一天。
题解:
模拟会超时
#include<stdio.h>
#include<iostream>
#include<string>
#include<cmath>
#include<vector>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long LL;
int month[13] = { 0,31,28,31,30,31,30,31,31,30,31,30,31 };
bool check(int date)
{
int year = date / 10000;
int m = date % 10000 / 100;
int day = date % 100;
if (!day || m < 0 || m > 12)
return 0;
if (m != 2 && day > month[m])
return 0;
if (m == 2)
{
if ((year % 4 == 0 && year % 100 != 0) || (year % 400 == 0))
{
if (day > 29) return 0;
}
else
{
if (day > 28) return 0;
}
}
return 1;
}
bool check1(string s)
{
int len = s.size();
for (int i = 0, j = len - 1; i < j; i++, j--)
{
if (s[i] != s[j])
return 0;
}
return 1;
}
bool check2(string s)
{
if (check1(s))
{
if (s[0] != s[2] || s[1] != s[3] || s[0] == s[1])
return 0;
return 1;
}
}
void solve()
{
int date;
bool flag = 1;
cin >> date;
for (int i = date+1;; i++)
{
string s = to_string(i);
if (check(i))
{
if (check1(s) && flag)
{
cout << i << endl;
flag = 0;
}
if (check1(s))
{
if (check2(s))
{
cout << i << endl;
return;
}
}
}
}
}
int main()
{
int t;
cin >> t;
while (t--)
{
solve();
}
}
7.字串排序
题面:
小蓝最近学习了一些排序算法,其中冒泡排序让他印象深刻。
在冒泡排序中,每次只能交换相邻的两个元素。
小蓝发现,如果对一个字符串中的字符排序,只允许交换相邻的两个字符,则在所有可能的排序方案中,冒泡排序的总交换次数是最少的。
例如,对于字符串lan 排序,只需要1 次交换。对于字符串qiao 排序,总共需要4 次交换。
小蓝的幸运数字是V,他想找到一个只包含小写英文字母的字符串,对这个串中的字符进行冒泡排序,正好需要V 次交换。请帮助小蓝找一个这样的字符串。
如果可能找到多个,请告诉小蓝最短的那个。
如果最短的仍然有多个,请告诉小蓝字典序最小的那个。
请注意字符串中可以包含相同的字符。
题解:
8.成绩统计
题面:
小蓝给学生们组织了一场考试,卷面总分为100 分,每个学生的得分都是一个0 到100 的整数。
如果得分至少是60 分,则称为及格。如果得分至少为85 分,则称为优秀。
请计算及格率和优秀率,用百分数表示,百分号前的部分四舍五入保留整数。
题解:
主要处理四舍五入,先*1000再取个位,判断是否大于5,大于5就加10。
#include<stdio.h>
#include<iostream>
#include<string>
#include<cmath>
#include<vector>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long LL;
int she(int x)
{
if (x % 10 > 5)
x += 10;
x /= 10;
return x;
}
int main()
{
int n,jg=0,yx=0,g,ans1,ans2;
cin >> n;
for (int i = 0; i < n; i++)
{
cin >> g;
if (g >= 60)
jg++;
if (g >= 85)
yx++;
}
ans1 = jg * 1000 / n;
ans2 = yx * 1000 / n;
ans1 = she(ans1);
ans2 = she(ans2);
printf("%d%%\n%d%%", ans1, ans2);
}
9.子串分值和
题面:
对于一个字符串S ,我们定义S 的分值f (S ) 为S 中出现的不同的字符个数。
例如f (”aba”) = 2, f (”abc”) = 3, f (”aaa”) = 1。
现在给定一个字符串S [0 : n - 1](长度为n),请你计算对于所有S 的非空子串S [i : j](0 ≤ i ≤ j < n), f (S [i:: j]) 的和是多少。
题解:
#include<stdio.h>
#include<iostream>
#include<string>
#include<cmath>
#include<vector>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long LL;
int last[200];
int main()
{
string s;
cin >> s;
int n = s.size();
s = ' ' + s;
LL ans = 0;
for (int i = 1; i <= n; i++)
{
ans += (LL)(i - last[s[i]]) * (n - i + 1);
last[s[i]] = i;
}
cout << ans << endl;
return 0;
}
10.平面切分
题面:
平面上有N 条直线,其中第i 条直线是y = Ai * x + Bi。
请计算这些直线将平面分成了几个部分。
输入格式
第一行包含一个整数N。
以下N 行,每行包含两个整数Ai, Bi。
对于50% 的评测用例,1 ≤ N ≤ 4, -10 ≤ Ai, Bi ≤ 10。
对于所有评测用例,1 ≤ N ≤ 1000, -100000 ≤ Ai, Bi ≤ 100000。
输出格式
一个整数代表答案。
题解:
#include<stdio.h>
#include<iostream>
#include<string>
#include<cmath>
#include<vector>
#include<algorithm>
#include<queue>
#include<set>
using namespace std;
typedef long long LL;
long double s[1010][2];
long long ans;
bool st[1010];
pair<long double, long double> p;
int main() {
int n;
cin >> n;
for (int i = 0; i < n; i++) {
cin >> s[i][0] >> s[i][1];
set<pair<long double, long double>> points;
for (int j = 0; j < i; j++)
{
if (st[j])continue;
if (s[i][0] == s[j][0])
{
if (s[i][1] == s[j][1])
{
st[i] = true;
break;
}
else continue;
}
p.first = (s[j][1] - s[i][1]) / (s[i][0] - s[j][0]);
p.second = s[i][0] * p.first + s[i][1];
points.insert(p);
}
if (!st[i])ans += points.size() + 1;
}
cout << ans + 1;
}