NLP-实体识别

实体识别(Named Entity Recognition, NER)在自然语言处理(NLP)中的应用

实体识别(NER)是自然语言处理中的一项重要任务,旨在从文本中识别出具有特定意义的实体(如人名、地名、组织名、时间、金额等)。这些实体在许多应用中起着关键作用,尤其是在信息提取、问答系统、文本分类等任务中。

1. 实体识别的基本概念

实体识别是指从自然语言文本中识别出具有明确语义意义的“实体”部分。常见的实体类型包括:

  • 人名(Person):如“Albert Einstein”、“李白”。
  • 地名(Location):如“Paris”、“北京”。
  • 组织名(Organization):如“Google”、“微软”。
  • 时间表达(Time):如“2020年1月1日”、“昨天”。
  • 数量和金额(Money/Quantity):如“100美元”、“10个苹果”。
  • 日期(Date):如“2023年12月25日”。
  • 百分比(Percent):如“50%”。

2. 实体识别的应用场景

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PeterClerk

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值