实体识别(Named Entity Recognition, NER)在自然语言处理(NLP)中的应用
实体识别(NER)是自然语言处理中的一项重要任务,旨在从文本中识别出具有特定意义的实体(如人名、地名、组织名、时间、金额等)。这些实体在许多应用中起着关键作用,尤其是在信息提取、问答系统、文本分类等任务中。
1. 实体识别的基本概念
实体识别是指从自然语言文本中识别出具有明确语义意义的“实体”部分。常见的实体类型包括:
- 人名(Person):如“Albert Einstein”、“李白”。
- 地名(Location):如“Paris”、“北京”。
- 组织名(Organization):如“Google”、“微软”。
- 时间表达(Time):如“2020年1月1日”、“昨天”。
- 数量和金额(Money/Quantity):如“100美元”、“10个苹果”。
- 日期(Date):如“2023年12月25日”。
- 百分比(Percent):如“50%”。