利用“重定义运算”及通项公式求解斐波那契数列

一、问题的提出

        利用矩阵运算(《北师大版高等代数(第五版)》p205-207)可以求得斐波那契数列通项公式:

h_n=\frac{1}{\sqrt 5}[(\frac{1+\sqrt 5}{2})^{n+1}-(\frac{1-\sqrt 5}{2})^{n+1}]

        有望在复杂度O(n)下求解斐波那契数列。然而c++中根式的精度不够,从第十项开始就会间隔地出现1左右的误差:

项数

12345678910111213141516171819
正确值1123581321345589144233377610987159725844181
计算值112358132134548914323237761098615962584

4181

        因此,必须尝试其他方法解决这一问题。

二、解决方案

        考虑到 h_m 算得一定是整数,可见 \sqrt 5 最终一定会被约成 1 ,由此模拟人脑计算时的约分过程重定义除法,同时重定义加、减、乘,即可解决问题。

        定义数 (a,b):=a+b\sqrt 5, 构成数域 Q(\sqrt 5) ,其中加减乘分别定义为:

        (a_1,b_1)\pm(a_2,b_2)=(a_1\pm a_2,b_1\pm b_2)

        (a_1,b_1)*(a_2,b_2)=(a_1a_2+5b_1b_2,a_1b_2+a_2b_1)

特别地,只定义可整除的情况:

        (a_1,b_1)/(a_2,b_2)=a_1/a_2

通项公式变形为:

        h_n=\frac{(1,0)*[(1,1)^n-(1,-1)^n]}{(0,1)*(2,0)^n}

源代码:

#include<bits/stdc++.h>
using namespace std;
struct Sqrt5{
	//定义数(a,b) 
	long long a,b;
};
Sqrt5 mul(Sqrt5 a,Sqrt5 b){
	//定义乘 
	Sqrt5 tmp;
	tmp.a=a.a*b.a+5*a.b*b.b;
	tmp.b=a.a*b.b+a.b*b.a;
	return tmp;
}
Sqrt5 pow(Sqrt5 a,int n){
	//定义乘方 
	Sqrt5 ans=a;
	for(int i=2;i<=n;i++){
		ans=mul(ans,a);
	}
	return ans;
}
Sqrt5 sub(Sqrt5 a,Sqrt5 b){
	//定义减 
	Sqrt5 tmp;
	tmp.a=a.a-b.a;
	tmp.b=a.b-b.b;
	return tmp;
}
long long div(Sqrt5 a,Sqrt5 b){
	//定义除 
	if(a.a!=0) return a.a/b.a;
	return a.b/b.b;
}
int main(){
	int n;
	Sqrt5 a,b,c,d,e;
	a.a=1;a.b=0;b.a=1;b.b=1;c.a=1;c.b=-1;d.a=0;d.b=1;e.a=2;e.b=0;
	for(int i=1;i<=38;i++){
		long long ans=div(mul(a,sub(pow(b,i),pow(c,i))),mul(d,pow(e,i)));
		cout<<ans<<" ";
	}
	
	return 0;
}

三、优化方向

        虽然复杂度仅为 O(n) ,但由于long long int的范围限制,只能计算到第三十七项。需要计算更多值需要结合高精度算法重定义运算。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值