基于网络爬虫的电影数据可视化分析系统的设计与实现

整个系统包括两大部分,如需要完整源码,可私信博主

一部分是使用python构建的爬虫,可爬取豆瓣电影数据并将爬取的数据存储在csv中,同时写入MySQL数据库。第二部分是针对爬取的数据进行多维数据清晰和分析,采用Flask框架进行前端的可视化呈现。

爬虫部分的基本原理:

豆瓣电影信息的url格式为:https://movie.douban.com/subject/id。例如:https://movie.douban.com/subject/26683290/

豆瓣是从2005年创办的,2005年以前的电影信息id很可能是最早的id。

搜索1999,得到一个1998年的电影。https://movie.douban.com/subject/1303954/。 id编号是七位的数字:1303954。搜索2016,得到最新的电影。https://movie.douban.com/subject/26928204/。 id编号是八位的数字:26928204。

由此猜测,目前(2016年)豆瓣电影的id大致是1300000到27000000。

由于反爬虫的设计,id是不连续的。为了提高命中率,需要对id的分布规律进行分析。

根据关键词种子,遍历搜索结果

豆瓣电影提供了搜索接口。通过关键词搜索得到相关记录的链接。

比如按年份获取,关键词可为:2005,2006,…2016。

比如分分类获取,关键词可为:动作,冒险,爱情,记录…。

基于网络爬虫的电影数据可视化分析系统的设计与实现综述

一、引言

随着信息技术的飞速发展,网络爬虫和数据可视化技术已经成为大数据分析领域的重要工具。在电影行业,通过爬取电影网站的数据,并结合机器学习算法进行分析,可以实现多维度的电影信息可视化,为观众、制片方和发行方提供有价值的参考信息。本文旨在综述基于网络爬虫的电影数据可视化分析系统的设计与实现过程,重点介绍如何使用Python实现爬虫,采用机器学习算法进行数据分析,并通过Flask框架和VUE技术实现前端可视化。

二、网络爬虫的设计与实现

网络爬虫是一种自动化程序,能够模拟人类浏览网页的行为,自动抓取网页上的数据。在本系统中,我们采用Python语言编写爬虫程序,利用requests库发送HTTP请求,获取豆瓣电影网站的数据。为了提高爬虫的效率和稳定性,我们采用了多线程、异步IO等技术,并设置了合理的请求间隔和重试机制,以避免对目标网站造成过大的访问压力。

在爬虫的设计过程中,我们还需要考虑数据的清洗和预处理。由于网页数据的格式和结构复杂多样,我们需要通过正则表达式、XPath等技术提取出有用的信息,并进行去重、去噪、格式化等操作,以便后续的数据分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值