Python简单编程算概率题

本文讲述了如何使用Python代替MATLAB解决一个涉及数学期望的最优化问题。通过代码展示了当单个事件概率变化时,所需检测次数的变化规律。
摘要由CSDN通过智能技术生成

晚上刚上完课,朋友就发来消息询问,如何用MATLAB求取不同情况下的最小值
聊天截图
具体的函数表达式
可以看出 EM 是一个由kp共同决定的二元函数,它是一个数学期望(这里省略了原题干,有兴趣的读者可在文章的末尾留言

说实话,笔者并不熟悉 MATLAB 的相关操作,MATLAB 是一个商用的数学建模分析仿真软件,同时也是一门编程语言。但是求解这个最优化问题,我们完全可以用到我们在课堂上学到的 Python 知识.

程序在 Anaconda带的 dupyter notebook 中运行

def optimize(min_k,p): 
    EM_list = []     
    k_list = []
    for k in range(min_k,min_k**2,1):
        EM = 1 - k*(1-p)**k + k
        EM_list.append(EM)
        k_list.append(k)
    min_value = min(EM_list)
    index = EM_list.index(min_value)
    best_k = k_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值