[动态规划] NOIP2006 能量项链

能量项链(NOIP)
问题描述

在Mars星球上,每个Mars人都随身佩带着一串能量项链。在项链上有N颗能量珠。能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数。并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记。因为只有这样,通过吸盘(吸盘是Mars人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量。如果前一颗能量珠的头标记为m,尾标记为r,后一颗能量珠的头标记为r,尾标记为n,则聚合后释放的能量为m*r*n(Mars单位),新产生的珠子的头标记为m,尾标记为n。需要时,Mars人就用吸盘夹住相邻的两颗珠子,通过聚合得到能量,直到项链上只剩下一颗珠子为止。显然,不同的聚合顺序得到的总能量是不同的,请你设计一个聚合顺序,使一串项链释放出的总能量最大。
例如:设N=4,4颗珠子的头标记与尾标记依次为(2,3) (3,5) (5,10) (10,2)。我们用记号⊕表示两颗珠子的聚合操作,(j⊕k)表示第j,k两颗珠子聚合后所释放的能量。则第4、1两颗珠子聚合后释放的能量为:
(4⊕1)=10*2*3=60。
这一串项链可以得到最优值的一个聚合顺序所释放的总能量为
((4⊕1)⊕2)⊕3)=10*2*3+10*3*5+10*5*10=710。

输入格式

输入的第一行是一个正整数N(4≤N≤100),表示项链上珠子的个数。第二行是N个用空格隔开的正整数,所有的数均不超过1000。第i个数为第i颗珠子的头标记(1≤i≤N),当i 至于珠子的顺序,你可以这样确定:将项链放到桌面上,不要出现交叉,随意指定第一颗珠子,然后按顺时针方向确定其他珠子的顺序。

输出格式

输出只有一行,是一个正整数E(E≤2.1*109),为一个最优聚合顺序所释放的总能量。

样例输入

4
2  3  5  10

样例输出

710


题解:

状态:f(i,j)表示从第i个珠子到第j个珠子聚合产生的最大能量值。

目标:ans=max{f(1,n),f(2,n+1),…,f(n,2*n-1)}

方程:F(i,j)=max{ F(i,k)+F(k+1,j)+a[i]*a[k+1]*a[j+1] }
以k为界将区间i到j分成两段,先合并左边i到k,再合并右边k+1到j,最后进行整体合并。
i≤k≤j-1, 1≤i≤2*n-1, i+1≤j≤n+i-1 (仅求长度不超过n的序列最优值)

初值: F(i,i)=0, 1≤i≤n


一般而言,如果是对环的最优值问题能通过枚举断点而求得最优解,都可以将环拉成链后复制一遍,求出链中所有长为n的段的最优值,此值即为环中对应的最优解。


通过拉伸后,动态规划的时间复杂度为O(n^3),可以迅速出解。

#include<cstdio>
#include<cstdlib>
#define maxn 10000
using namespace std;
int f[maxn][maxn],data[maxn*2],n,maxx;
int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&data[i]);
		data[i+n]=data[i];
	}
	for(int j=2;j<=n;j++)
	{
		for(int i=1;i<=n;i++)
		{
			for(int k=1;k<j;k++)
			{
				int temp=f[i][k]+f[i+k][j-k]+data[i]*data[i+k]*data[i+j];
				if(f[i][j]<temp)
				{
					f[i][j]=temp;
				}
			}
			f[i+n][j]=f[i][j];
		}
	}
	for(int i=1;i<=n;i++)
	{
		if(maxx<f[i][n])
		{
			maxx=f[i][n];
		}	
	}
	printf("%d\n",maxx);
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值