JSOI2013 旅行时的困惑

这篇博客介绍了JSOI2013年的一道题目,涉及一棵无根有向树的最小路径覆盖问题。由于每个点可以被覆盖多次,作者将问题转化为求解有向无环图的最小起点数。通过网络流的方法,讨论了如何在允许一个点多次覆盖的情况下修正经典最小路径覆盖算法,确保正确计算路径。最终得出的算法复杂度为|V|=O(N),|E|=O(M)。

题目大意

给定一棵无根有向树(树边是有向边,并且树可能不联通),你需要用最少的路径来覆盖完所有的树边。路径的方向必须与其覆盖到的树边相反,并且路径也是有向的。每个点或边可以被覆盖多次。

解题思路

假如这题中每个点只能被覆盖一次的话,那么就是最简单的最小路径覆盖了。

但是这题中每个点可以被覆盖多次,但是假如我们把一条边也看作一个点,也就是说现在总共有2N1个点,我们发现每个点最多只会被作为起点一次。那么原问题现在就等价于用最少的起点使得他能覆盖完所有的点了。(注意现在已经没有了边的概念了)

新版最小路径覆盖

我们现在的问题变为了:
给定一个N个点的有向无环图,每个点只能被作为起点一次,要你求出用最少的起点能遍历完所有的点。

做法

假如不考虑一个起点能覆盖多个点的情况的话,答案显然就是 N 了。

我们要求原问题最小,相当于要覆盖尽量多的点。

假如我们一个点只能被覆盖一次的话,那就是经典的最小路径覆盖。
做法是将一个点拆为Xi,Yi,原点向Xi连流量为1的边,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值