【省选专题一】图论 jzoj 3290【JSOI2013】吃货JYY 状压dp+欧拉回路

23 篇文章 0 订阅

Description

世界上一共有N个JYY愿意去的城市,分别从1编号到N。JYY选出了K个他一定要乘坐的航班。除此之外,还有M个JYY没有特别的偏好,可以乘坐也可以不乘坐的航班。
一个航班我们用一个三元组(x,y,z)来表示,意义是这趟航班连接城市x和y,并且机票费用是z。每个航班都是往返的,所以JYY花费z的钱,既可以选择从x飞往y,也可以选择从y飞往x。
南京的编号是1,现在JYY打算从南京出发,乘坐所有K个航班,并且最后回到南京,请你帮他求出最小的花费。

Input

输入数据的第一行包含两个整数N和K;
接下来K行,每行三个整数x,y,z描述必须乘坐的航班的信息,数据保证在这K个航班中,不会有两个不同的航班在同一对城市之间执飞;
第K+2行包含一个整数M;
接下来M行,每行三个整数x,y,z 描述可以乘坐也可以不乘坐的航班信息。

Output

输出一行一个整数,表示最少的花费。数据保证一定存在满足JYY要求的旅行方案。

Sample Input

6 3
1 2 1000
2 3 1000
4 5 500
2
1 4 300
3 5 300

Sample Output

3100

Data Constraint

对于10%的数据满足N≤4;
对于30%的数据满足N≤ 7;
对于额外30%的数据满足,JYY可以只通过必须乘坐的K个航班从南京出发到达任意一个城市;
对于100%的数据满足2≤N≤13,0≤K≤78,2 ≤M ≤ 200,1 ≤x,y ≤N,1 ≤z ≤ 10^4。

Hint

样例说明:一个可行的最佳方案为123541。 机票所需的费用为1000+1000+300+500+300=3100。

分析:我们发现一条可行的道路当且仅当经过所有必须经过的边,且此时所有点的入度都为偶数。
我们发现可以dp(一开始都没往这么方向想,不是说图论专题吗= =)。设f[u]为状态为u时的答案,u为一个n位三进制数,第i位0表示点i入度为0,1表示入度为奇数,2表示偶数(把0单独出来是应该该点不在欧拉回路内)。首先把1号点加入连通块内,每次枚举下一个入度为0点的加入这个连通块,再枚举连通块内一个点,把这两个点连起来,显然代价为两点之间的最短路;如果这两点间有直接相连的必须走的边,代价可以看做0,最后再把k条边的代价加上,然后连接的两个点的奇偶性改变,过程中的点奇偶性不改变。
考虑这样一种情况,(u,v)有条代价为x的必走边,还有代价为y的可走边,此时如果x>y,显然是不能把必走边看为0的,只有在这两点间有直接相连的必须走的边(注意这个),代价才算0。我们这样跑出了f[u],它描述的欧拉图在同状态下是一样的,且会把所有必走边跑掉(只要该状态合法)。剩下的就是把1变成2即可。暴力两个1,把这两点连起来,代价为两点最短路,此时必走边不看做0,为初始代价。

代码(by 66w):

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#define MIN(x,y) x=min(x,y)
#define inf 0x3f3f3f3f
using namespace std;

const int N=15;

int n,m,dis[N][N],cnt,last[N],g[9005],f[1600005],bin[N],pow[N],a[N],deg[N];
struct edge{int to,next,w;}e[N*10];
queue<int> que;

int read()
{
    int x=0,f=1;char ch=getchar();
    while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}

void addedge(int u,int v,int w)
{
    e[++cnt].to=v;e[cnt].w=w;e[cnt].next=last[u];last[u]=cnt;
    e[++cnt].to=u;e[cnt].w=w;e[cnt].next=last[v];last[v]=cnt;
}

void floyd()
{
    for (int k=1;k<=n;k++)
        for (int i=1;i<=n;i++)
            for (int j=1;j<=n;j++)
                MIN(dis[i][j],dis[i][k]+dis[k][j]);
}

void pre_dp()
{
    memset(g,inf,sizeof(g));
    g[0]=0;
    for (int i=0;i<bin[n];i++)
        for (int j=1;j<=n;j++)
            if (!(i&bin[j-1]))
                for (int k=j+1;k<=n;k++)
                    if (!(i&bin[k-1]))
                        MIN(g[i^bin[j-1]^bin[k-1]],g[i]+dis[j][k]);
}

void dp()
{
    memset(f,inf,sizeof(f));
    f[2]=0;que.push(2);
    while (!que.empty())
    {
        int s=que.front(),tot=0;que.pop();
        for (int i=1;i<=n;i++) if (s/pow[i-1]%3>0) a[++tot]=i;
        for (int i=1;i<=n;i++)
            if (s/pow[i-1]%3==0)
            {
                for (int j=last[i];j;j=e[j].next)
                    if (s/pow[e[j].to-1]%3>0)
                    {
                        int s1=s+pow[i-1]*2;
                        if (f[s]>=f[s1]) continue;
                        if (f[s1]==inf) que.push(s1);
                        f[s1]=f[s];
                    }
                for (int j=1;j<=tot;j++)
                {
                    int s1=s+pow[i-1];
                    s1+=(s/pow[a[j]-1]%3==1)?pow[a[j]-1]:-pow[a[j]-1];
                    if (f[s]+dis[i][a[j]]>=f[s1]) continue;
                    if (f[s1]==inf) que.push(s1);
                    f[s1]=f[s]+dis[i][a[j]];
                }
            }
    }
}

void calc()
{
    int ans=inf;
    for (int s=0;s<pow[n];s++)
    {
        int flag=0;
        for (int i=1;i<=n;i++) if (last[i]&&!(s/pow[i-1]%3)) {flag=1;break;}
        if (flag) continue;
        int now=s;
        for (int i=1;i<=n;i++) if (deg[i]&1) now+=(s/pow[i-1]%3==1)?pow[i-1]:-pow[i-1];
        int s1=0;
        for (int i=1;i<=n;i++) if (now/pow[i-1]%3==1) s1^=bin[i-1];
        MIN(ans,f[s]+g[s1]);
    }
    for (int i=1;i<=cnt;i+=2) ans+=e[i].w;
    printf("%d",ans);
}

int main()
{
    n=read();m=read();
    bin[0]=pow[0]=1;
    for (int i=1;i<=n;i++) bin[i]=bin[i-1]*2,pow[i]=pow[i-1]*3;
    memset(dis,inf,sizeof(dis));
    for (int i=1;i<=m;i++)
    {
        int x=read(),y=read(),z=read();
        dis[x][y]=dis[y][x]=min(dis[y][x],z);
        deg[x]++;deg[y]++;
        addedge(x,y,z);
    }
    m=read();
    while (m--)
    {
        int x=read(),y=read(),z=read();
        dis[x][y]=dis[y][x]=min(dis[y][x],z);
    }
    floyd();
    pre_dp();
    dp();
    calc();
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
根据引用[1],dp[u][j]表示在u子树中取恰好j个人时能获得的最大价值。而根据引用,该问题的时间复杂度为O(log2​104×nm)。 对于洛谷P2143 [JSOI2010] 巨额奖金问题,我们可以使用动态规划来解决。具体步骤如下: 1. 首先,我们需要构建一棵树来表示员工之间的关系。树的根节点表示公司的总经理,其他节点表示员工。每个节点都有一个权值,表示该员工的奖金金额。 2. 接下来,我们可以使用动态规划来计算每个节点的dp值。对于每个节点u,我们可以考虑两种情况: - 如果择节点u,则dp[u][j] = dp[v][j-1] + value[u],其中v是u的子节点,value[u]表示节点u的奖金金额。 - 如果不择节点u,则dp[u][j] = max(dp[v][j]),其中v是u的子节点。 3. 最后,我们可以通过遍历树的所有节点,计算出dp[u][j]的最大值,即为所求的巨额奖金。 下面是一个示例代码,演示了如何使用动态规划来解决洛谷P2143 [JSOI2010] 巨额奖金问题: ```python # 构建树的数据结构 class Node: def __init__(self, value): self.value = value self.children = [] # 动态规划求解最大奖金 def max_bonus(root, j): dp = [[0] * (j+1) for _ in range(len(root)+1)] def dfs(node): if not node: return for child in node.children: dfs(child) for k in range(j, 0, -1): dp[node.value][k] = max(dp[node.value][k], dp[node.value][k-1] + node.value) for child in node.children: for k in range(j, 0, -1): for l in range(k-1, -1, -1): dp[node.value][k] = max(dp[node.value][k], dp[node.value][k-l-1] + dp[child.value][l]) dfs(root) return dp[root.value][j] # 构建树 root = Node(1) root.children.append(Node(2)) root.children.append(Node(3)) root.children[0].children.append(Node(4)) root.children[0].children.append(Node(5)) root.children[1].children.append(Node(6)) # 求解最大奖金 j = 3 max_bonus_value = max_bonus(root, j) print("最大奖金为:", max_bonus_value) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值