2016ACM-ICPC沈阳网络预选赛1003 hannnnah_j's Biological Test

题意: m个人要考试,老师将他们安排在一张有n把椅子的圆桌上,任意两人之间至少隔着k把椅子,问方案数 %(1e9+7) .

思路:
1. n>=m(k+1) .
2.固定第一个人的位置,这样固定的方法就有 n 种,先在两人之间放k把椅子,那么剩下 nm(k+1)把椅子.
3.剩下的椅子要放在任意两人之间,这样就是一个经典模型:小球不区分,盒子区分,盒子可为空.即 (m1nmk1)
4.固定第一人的方法有 n 种,并且每个位置轮流会有重复,所以需要除以m.最终答案即是

n(m1nmk1)mmod(1e9+7)

5.显然这是个大组合数,Lucas定理套一下,

注意:需要特判 m==1 的情况,即使一个人,可在 n 位置上任意选,答案即为n.

代码链接:https://github.com/PhyCoe/ACM-Training/blob/master/Code/hdu5894.cpp

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值