自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(258)
  • 收藏
  • 关注

原创 大气污染扩散模型Calpuff技术应用

Calpuff模型是一种三维非稳态拉格朗日扩散模型,可有效地处理非稳态(如,熏烟、环流、地形和海岸等)下污染物的长距离输送,对污染物浓度进行模拟预测,从而更好地判断受体点污染物的来源。模型主要包括:地形、气象数据预处理模块,Calmet模块,Calpuff模块以及Calpost模块。

2024-04-30 10:46:01 460

原创 FLEXPART拉格朗日粒子扩散模式建模技术及研究大气污染物源-汇关系中的实践经验与技巧

拉格朗日粒子扩散模式FLEXPART通过计算点、线、面或体积源释放的大量粒子的轨迹,来描述示踪物在大气中长距离、中尺度的传输、扩散、干湿沉降和辐射衰减等过程。该模式既可以通过时间的前向运算来模拟示踪物由源区向周围的扩散,也可以通过后向运算来确定对于固定站点有影响的潜在源区分布。

2024-04-30 10:45:26 635

原创 基于delft3d模型的标量输运、波浪、拉格朗日粒子 及溢油模型应用

基于delft3d模型的标量输运、波浪、拉格朗日粒子 及溢油模型应用

2024-04-29 10:10:54 515

原创 基于“python+”潮汐、风驱动循环、风暴潮等海洋水动力模拟实践技术应用

利用Python在数据处理、科学计算和数据可视化方面的优势,将其结合应用在ADCIRC模式的前后处理当中,助力ADCIRC模式的使用,并在海洋、气象和水文等地学领域的业务、科研和工程项目中得到实际有效的应用。

2024-04-29 10:00:35 884

原创 基于AERMOD模型在大气环境影响评价中的技术应用

ERMOD模型被广泛用于大气污染预测、大气环境影响评价和大气污染防治工作中。

2024-04-28 09:22:17 1139

原创 基于MATLAB野外观测站生态气象数据处理分析

基于MATLAB野外观测站生态气象数据处理分析

2024-04-28 09:21:28 545

原创 EFDC建模方法及在地表水环境评价、水源地划分、排污口论证中实践技术应用

EFDC是免费开源的数值模型,相关参数上百项,但目前EFDC相关的介绍和实例很少,中文书籍就更少,对初学者来说,很难快速掌握和应用EFDC去解决实际问题;此外,由于EFDC免费开源,还处在半成熟阶段,使用过程中还需要大量实践经验。

2024-04-27 14:14:23 832

原创 解决NC数据格式的困扰:NC(通用数据格式)文件处理及(CDO&NCO)应用技术

解决NC数据格式的困扰:NC(通用数据格式)文件处理及(CDO&NCO)应用技术

2024-04-27 14:07:53 1056

原创 基于Python常见地球科学数据(ERA5、雪深、积雪覆盖、海温、植被指数、土地利用)处理实践技术应用

基于Python常见地球科学数据(ERA5、雪深、积雪覆盖、海温、植被指数、土地利用)处理实践技术应用

2024-04-26 09:11:46 1983

原创 基于站点、模式、遥感多源降水数据融合技术应用

降水在水循环中发挥着重要作用,塑造了生态景观和生态系统。目前,有四种主要方式获取降水数据:1)雨量计观测,2)地基雷达遥感,3)卫星遥感,4)模式模拟。基于雨量计观测的降水,通常被认为是最准确和可靠的。但由于复杂的地形和恶劣的环境,在中国西部人烟罕至地区没有气象站。基于站点数据网格化降水产品的准确性在很大程度上取决于站点空间密度和环境条件,而这些条件在不同地区有很大差异。因此,有必要将卫星遥感和模式数据结合起来,进一步提供高质量、高分辨率的降水数据。

2024-04-26 09:11:17 876

原创 MATLAB在生态环境数据处理与分析中的应用

MATLAB在生态环境数据处理与分析中的应用

2024-04-25 08:43:30 545

原创 最新导则下的生态环境影响评价技术方法及图件制作(土地利用现状图的制作、植被类型图的制作、植被覆盖度图的制作、生态系统类型图的制作、物种适宜生境分布图的制作等)

利用Rstudio、Fragstats等软件分析计算生态环评中所需各种指数,利用ENVI、Maxent等软件分析制作生态环评中所需各种图件。内容包括生态环评的工作程序、生物多样性测定、生物量及净初级生产力测定、生态系统格局及服务功能评估、生物完整性指数测定、景观指数计算、生态环境状况综合指数计算;土地利用现状图的制作、植被类型图的制作、植被覆盖度图的制作、生态系统类型图的制作、物种适宜生境分布图的制作等。内容丰富而全面,可参考进行各种项目的生态环评工作。

2024-04-25 08:43:03 1480

原创 Python在气象与海洋中的实践技术应用

人工智能和大数据技术在许多行业都取得了颠覆式的成果,气象和海洋领域拥有海量的模式和观测数据,是大数据和人工智能应用的天然场景。Python也是当前进行机器学习和深度学习应用的最热门语言。对于的气象海洋领域的专业人员,Python是进行机器学习和深度学习工作的首选。

2024-04-24 08:47:32 763

原创 Python人工智能在气象中的实践技术应用

人工智能和大数据技术在许多行业都取得了颠覆式的成果,气象和海洋领域拥有海量的模式和观测数据,是大数据和人工智能应用的天然场景。Python也是当前进行机器学习和深度学习应用的最热门语言。对于的气象海洋领域的专业人员,Python是进行机器学习和深度学习工作的首选。

2024-04-24 08:43:40 1066

原创 双碳目标下基于“遥感+”集成技术的碳储量、碳排放、碳循环、温室气体等多领域监测与模拟

双碳目标下基于“遥感+”集成技术的碳储量、碳排放、碳循环、温室气体等多领域监测与模拟:解决遥感技术在生态、能源、大气等领域的碳排放监测及模拟问题

2024-04-23 09:40:00 603

原创 如何利用FLUENT计算流体力学方法解决大气与环境领域流动问题?

ANSYS FLUENT是目前全球领先的商用CFD 软件,市场占有率达70%左右,是工程师和研究者不可多得的有力工具。由于采用了多种求解方法和多重网格加速收敛技术,因而FLUENT能达到最佳的收敛速度和求解精度。灵活的非结构化网格和基于解的自适应网格技术及成熟的物理模型,使FLUENT能够处理转捩与湍流、传热与相变、化学反应与燃烧、多相流、旋转机械、动/变形网格、噪声、材料加工、燃料电池等领域的流动、传热及化学反应问题。

2024-04-23 09:35:01 1261

原创 Meta分析在生态环境领域里的应用

Meta分析(Meta Analysis)是当今比较流行的综合具有同一主题的多个独立研究的统计学方法,是较高一级逻辑形式上的定量文献综述。20世纪90年代后,Meta分析被引入生态环境领域的研究,并得到高度的重视和长足的发展,尤其是在生态系统对CO2浓度升高、全球变暖、O3浓度升高等的响应,以及土地利用变化对气候变化的影响等方面的应用发展迅速。

2024-04-22 08:58:24 498

原创 环境土壤物理Hydrus1D2D模型实践技术应用及典型案例分析

Hydrus是基于Windows系统界面开发的环境土壤物理模拟软件,是用于模拟一维和多维变饱和多孔介质的水分运动、溶质(污染物等)运移、根系吸水和溶质吸收、以及热量传导等方面的强有力工具。Hydrus还包括一个参数优化算法,用于各种土壤的水力学、溶质运移和热传递参数的反演估计。该模型具有灵活方便的图形操作界面,深受各国学者推崇,广泛应用于环境、水文地质、农业、水利等领域。

2024-04-22 08:53:21 1374

原创 流域生态系统水-碳-氮耦合过程模拟

流域是一个相对独立的自然地理单元,它是以水系为纽带,将系统内各自然地理要素连结成一个不可分割的整体。碳和氮是陆地生态系统中最重要的两种化学元素,而在流域系统内,水-碳-氮是相互联动、不可分割的耦合体。随着流域内人类活动的加剧,流域已成为区域内人地关系十分敏感而复杂的地理单元。在人类活动的影响下,陆地水循环过程以及伴随着的碳氮生物地球化学过程都将发生显著变化,并导致气候变化和生态环境问题,因此流域生态系统水-碳-氮耦合过程模拟与环境影响已成为当前关注的焦点。

2024-04-21 22:58:14 697

原创 ChatGPT深度科研应用、数据分析及机器学习、AI绘图与高效论文撰写

掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、RNN与LSTM神经网络、YOLO目标检测、自编码器等)的基本原理及Python、PyTorch代码实现方法。

2024-04-21 22:54:42 705

原创 FVCOM流域、海洋水环境数值模拟方法及实践技术应用

FVCOM在近岸水环境模拟方面具有一定优势,如采用非结构化三角形网格易于拟合岸线和局部加密,垂向σ坐标系易于拟合底边界地形,干湿判别法处理潮滩动边界,内外模分裂以节省计算时间等。本课程包括海洋数值模式基础理论讲解,Linux操作系统下FVCOM运行环境搭建,应用FVCOM进行流域、海洋水动力、温盐、水质的数值模拟,水动力、温盐、水质的数值模拟结果的率定、相关前沿问题的介绍等。

2024-04-20 18:23:15 1165

原创 基于FVCOM模型的三维水动力、水交换、溢油物质扩散及输运数值模拟

在Linux系统下进行FVCOM运行环境搭建、编译、运行。其次,应用FVCOM实现三维水动力的数值模拟,同时针对水动力计算结果进行可视化、分析及率定。最后,应用FVCOM实现三维水交换、污染物迁移扩散的数值模拟及并结果分析。

2024-04-20 18:22:53 927

原创 最新基于SWAT-MODFLOW地表水与地下水耦合实践技术应用

耦合模型被应用到很多科学和工程领域来改善模型的性能、效率和结果,SWAT作为一个地表水模型可以较好的模拟主要的水文过程,包括地表径流、降水、蒸发、风速、温度、渗流、侧向径流等,但是对于地下水部分的模拟相对粗糙,考虑到SWAT模型的限制,在SWAT模型和MODFLOW模型的框架上,建立了SWAT-MODFLOW耦合模型来更加综合的考虑地表-地下过程,并且更精确的描述地下水流动过程。国内外学者使用SWAT-MODFLOW模型或其改进形式对很多场地进行了研究。

2024-04-19 08:39:18 1119

原创 “R+遥感”的水环境综合评价方法实践技术应用

“R+遥感”的水环境综合评价方法实践技术应用

2024-04-19 08:37:58 865

原创 基于ArcGIS的SWAT模型和CENTURY模型结合实现流域水碳氮综合模拟-流域生态系统水-碳-氮耦合过程模拟

基于ArcGIS的SWAT模型是一类比较典型的流域模型,结合SWAT模型和生物地球化学循环模型可以实现流域水碳氮综合模拟。

2024-04-18 10:35:45 1067

原创 如何结合最新AI模型与Python技术处理和分析气候数据

深度探讨人工智能在大气科学中的应用,特别是如何结合最新AI模型与Python技术处理和分析气候数据。介绍包括GPT-4等先进AI工具,旨在帮助大家掌握这些工具的功能及应用范围。内容覆盖使用GPT处理数据、生成论文摘要、文献综述、技术方法分析等实战案例,使大家能够将AI技术广泛应用于科研工作。特别关注将GPT与Python结合应用于遥感降水数据处理、ERA5大气再分析数据的统计分析、干旱监测及风能和太阳能资源评估等大气科学关键场景。

2024-04-18 08:31:45 1322

原创 基于Citespace和vosviewer文献计量学可视化SCI论文高效写作方法

在没有实验数据的情况下,如何快速高效发表出高影响因子论文?基于Citespace和vosviewer文献计量学可视化SCI论文高效写作方法

2024-04-18 08:31:10 1357

原创 地理信息系统(ArcGIS)在水文水资源、水环境中的应用

地理信息系统(GIS)强大的空间数据管理和分析功能,在空间信息处理上有独到的优势,是研究区域水文水环境的空间差异的有力工具,GIS在水文水环境中的应用对解决水文水环境中许多问题起着重要的作用与意义。

2024-04-17 08:40:18 921

原创 1990–2016年中国30米分辨率水稻种植分布数据集

本数据集为1990–2016年中国30米分辨率水稻种植分布数据集,覆盖范围包含中国大陆25个省级行政区。数据文件格式为GeoTIFF,地理参考为WGS84(EPSG:4326),每年一个文件,文件名格式为 CCD-Rice-China-年份-v1.tif。数据集基于Landsat影像,使用随机森林生产。基于 391,659 个验证样本,各省级行政区域分布图的总体精度平均为90.26%。与 20,759 个县级统计数据相比,各年单季稻和双季稻的决定系数(R2)的均值分别为0.84和0.80。

2024-04-17 08:38:21 476

原创 “Python+”集成技术高光谱遥感数据处理与机器学习深度应用

结合Python编程工具,专注于解决高光谱数据读取、数据预处理、高光谱数据机器学习等技术难题,通过复现高光谱数据处理和分析过程,并解析代码,掌握python高光谱数据处理技巧。通过矿物识别、农业应用、木材含水量提取、土壤有机碳评估等案例,提供可借鉴的高光谱应用技术方案,结合Python科学计算、可视化、数据处理和机器学习库,深入讲解应用开发。

2024-04-16 09:20:31 1166

原创 ​基于MATLAB长时间序列遥感数据处理及在全球变化、物候提取、植被变绿与固碳分析等领域中的应用

定量评估植被时空动态变化是制定生态系统可持续发展目标和衡量生态系统固碳潜力的重要前提,卫星遥感数据衍生的生态参量产品为研究长时间序列全球及区域植被时空变化提供了重要数据源。目前已经从卫星获取的遥感数据反演了许多长时序生物物理参量产品,如GIMMS3g NDVI/LAI/FAPAR、MODIS NDVI/LAI/FAPAR/ GPP、GLASS LAI/FVC/GPP等,并且已经广泛应用于全球或区域尺度植被变化趋势及格局分析。

2024-04-16 09:15:47 763

原创 Python-GEE遥感云大数据分析、管理与可视化及多领域案例实践应用

为解决此问题,全球涌现出多个地球科学数据在线可视化计算和分析云平台,如谷歌Earth Engine(GEE)、航天宏图PIE Engine和阿里AI Earth等。其中,Earth Engine功能最为强大,能存取和同步MODIS、Landsat、Sentinel等卫星影像及NCEP等气象再分析数据集,并依托全球上百万台超级服务器提供强大运算能力。目前,该平台包含1000余个公共数据集,每月新增约2 PB数据,总容量超过100PB。

2024-04-15 09:02:26 875

原创 双碳目标下基于“遥感+”集成技术的碳储量、碳排放、碳循环、温室气体等多领域监测与模拟

双碳目标下基于“遥感+”集成技术的碳储量、碳排放、碳循环、温室气体等多领域监测与模拟。卫星遥感具有客观、连续、稳定、大范围、重复观测的优点,已成为监测全球碳盘查不可或缺的技术手段,卫星遥感也正在成为新一代 、国际认可的全球碳核查方法。

2024-04-15 08:55:37 1134

原创 PROSAIL模型前向模拟与植被参数遥感提取代码实现

传统的地面实测方法能够得到比较准确的植被参数(如叶面积指数、覆盖度、生物量、叶绿素、干物质、叶片含水量、FPAR等),但其获取信息有限,难以满足大范围提取植被参数的需求,尤其在异质地表区域。遥感技术的发展为植被生长状态及动态监测提供了重要的技术手段,与传统地面实测方法不同,遥感把传统的“点”测量获取的有限代表性信息扩展为更加符合客观世界的“面”信息(即区域信息),且不会对生态系统造成破坏,能够长期、动态、连续地估算植被参数,在区域或全球尺度植被参数估算中具有不可替代的优势。

2024-04-14 21:25:38 862

原创 CASA(Carnegie-Ames-Stanford Approach)模型原理及实践应用

植被作为陆地生态系统的重要组成部分对于生态环境功能的维持具有关键作用。植被净初级生产力(Net Primary Productivity, NPP)是指单位面积上绿色植被在单位时间内由光合作用生产的有机质总量扣除自养呼吸的剩余部分。植被NPP是表征陆地生态系统功能及可持续性的重要参数之一,不仅直接反映生态系统在自然环境条件下的生产能力及质量状况,也是判定生态系统碳源/汇的重要因子。目前,基于多源遥感数据开展大尺度、长时间序列植被NPP估算并应用地理信息系统技术进行综合的空间格局和动态分析已经成为量化NPP的

2024-04-14 21:24:22 883

原创 ChatGPT深度科研应用、数据分析及机器学习、AI绘图与高效论文撰写

熟练地掌握ChatGPT4.0在数据分析、自动生成代码等方面的强大功能,同时更加系统地学习人工智能(包括传统机器学习、深度学习等)的基础理论知识,以及具体的代码实现方法,人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、RNN与LSTM神经网络、YOLO目标检测、自编码器等)的基本原理及Python、PyTorch代码实现方法。

2024-04-13 21:29:34 1826

原创 如何利用FLUENT计算流体力学方法解决大气与环境领域流动问题

ANSYS FLUENT是目前全球领先的商用CFD 软件,市场占有率达70%左右,是工程师和研究者不可多得的有力工具。由于采用了多种求解方法和多重网格加速收敛技术,因而FLUENT能达到最佳的收敛速度和求解精度。灵活的非结构化网格和基于解的自适应网格技术及成熟的物理模型,使FLUENT能够处理转捩与湍流、传热与相变、化学反应与燃烧、多相流、旋转机械、动/变形网格、噪声、材料加工、燃料电池等领域的流动、传热及化学反应问题。

2024-04-13 09:08:11 674

原创 GPT与Python结合应用于遥感降水数据处理、ERA5大气再分析数据的统计分析、干旱监测及风能和太阳能资源评估等大气科学关键场景

AI大模型智能大气科学探索之:ChatGPT在大气科学领域建模、数据分析、可视化与资源评估中的高效应用及论文写作如何结合最新AI模型与Python技术处理和分析气候数据。特别关注将GPT与Python结合应用于遥感降水数据处理、ERA5大气再分析数据的统计分析、干旱监测及风能和太阳能资源评估等大气科学关键场景。

2024-04-13 09:06:17 1184

原创 基于Python长时间序列遥感数据处理及在全球变化、物候提取、植被变绿与固碳分析、生物量估算与趋势分析等领域中的应用

定量评估植被时空动态变化是制定生态系统可持续发展目标和衡量生态系统固碳潜力的重要前提,卫星遥感数据衍生的生态参量产品为研究长时间序列全球及区域植被时空变化提供了重要数据源。目前已经从卫星获取的遥感数据反演了许多长时序生物物理参量产品,如GIMMS3g NDVI/LAI/FAPAR、MODIS NDVI/LAI/FAPAR/ GPP、GLASS LAI/FVC/GPP等,并且已经广泛应用于全球或区域尺度植被变化趋势及格局分析。

2024-04-12 13:41:46 741

原创 【高分论文密码】大尺度空间模拟预测与数字制图

从空间数据计量、大尺度时间序列分析与突变检测、空间数据插值、空间数据建模、机器学习空间预测、多种机器学习集成技术、空间升、降尺度技术、空间模拟偏差订正技术、数据可视化、知识图谱等方面让您全方位掌握R语言大尺度空间数据分析模拟预测及可视化技术。

2024-04-12 09:12:04 881

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除