1024!末尾有几个0?这么小的一道问题,很多人随口就答上来了,答案五花八门。这种问题一定要细心才能得出正确结果。
首先,产生0的情况只有两种,一种是本身就含有0的数(10,100,1000等),一种是两个数结合产生0(5和偶数相乘),然后其实10本身又是5的倍数,所以只要找到了5的倍数的个数,就有足够多的偶数与之相乘产生0,所以共有1024/5=204个。
但是像25和它的倍数这种数,因为它可以分解为5*5,所以它其实是可以和偶数相乘产生两个0的,所以要补上1024/25=40个。
同理,125和它的倍数,因为可以分解为5*5*5的形式,可以产生3个0,所以还要补上1024/125 = 8个。
然后,625和它的倍数,可以分解为5*5*5*5的形式,可以产生4个0,所以要加上1024/625=1个。625*5 = 3125就大于1024了不会再产生0了。
所以共有,204+40+8+1=253个0。