- 博客(23)
- 收藏
- 关注
原创 Matplotlib进阶
目录Matplotlib的三层结构Artist详解画图的流程primitive的内容介绍container介绍FigureAxesAxisMatplotlib的三层结构其中第一层是Matplotlib的绘图区,也就是Canvas。其中的API为:matplotlib.backend_bases.FigureCanvas。所有的图像都是在绘图区中完成的。然后就是渲染器,可以理解为画笔。个人认为,我们通过定义一些图像或者曲线后,这些仍然只是数据,只有在最后一步渲染的时候,才将其画在屏幕上。渲染器的API为m
2021-09-18 21:10:27 243
原创 matplotlib学习-001 基本介绍
目录Matplotlib简介画图方法Matplotlib简介Matplotlib是一个Python 2D的绘图库。它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式。画图方法Matplotlib中有两种画图方法。使用matplotlib.pyplot库中的函数来画图使用这种方法画图相对来说较为简单。基本流程,首先需要调用库,import matplotlib.pyplot as plt。然后申请一张画布,plt.figure(),后续的画图就在这张画布上进行。然后使用plt.plot(
2021-09-14 20:05:29 191
原创 2021-06-28
目录假设空间与学习评估指标accuracy or errorprecision and recall(召回率)评估方法留出法交叉验证法假设空间与学习假设空间,就是一个由所有假设构成的空间。因为世界上很多暗含的规律,总有一条符合想要解决的问题。因此,学习的过程也可以看成是在假设空间中搜索符合的规律的过程。当然很多事情的假设空间是很庞大,是无法通过遍历法来探寻到符合条件的假设。因此对假设空间的搜索就需要有一定的策略,例如:自顶向下、自底向上、从一般到特殊、从特殊到一般等。但是,在实际的工作中,是不存在可以
2021-07-13 22:43:32 76
原创 Datawhale-集成学习Day6-XGBoost
Datawhale-集成学习Day6-XGBoost1. 前置知识——泰勒公式2. XGBoost1. 前置知识——泰勒公式学过高等数学的话,我们就可以知道泰勒公式。这是一个很美妙的公式,其最大的贡献就是可以通过多项式来表示其他函数。也就是说,我们可以将一些不规则的函数转化为一个无限项的多项式。带有Peano余项的泰勒公式:f(x)=f(x0)+f‘(x0)(x−x0)+f‘‘(x0)2!(x−x0)2+⋯+f(n)(x0)n!(x−x0)n+o((x−x0)n)f(x)=f(x_0)+f^`(x
2021-04-26 23:38:35 111
原创 Datawhale-Docker学习笔记-0006-Docker 综合
Datawhale-Docker学习笔记-0006-Docker 综合1. 通过挂载部署项目2. 构建镜像部署1. 通过挂载部署项目假如说,我们现在有一个JAVA已经写好的项目,需要进行部署到服务器。在没有使用容器的情况下,我们正常情况下的步骤应该是,先在服务器上部署各种需要的环境,然后再通过指令运行项目。但是有了Docker后,我们就有了其他的方法。第一种就是通过将项目挂载在数据卷上运行。首先,我们需要将JAR包传输到服务器上。例如:/root/docker/jar/。然后,我们需要获取一个包
2021-04-23 23:02:47 98
原创 Datawhale-集成学习-学习笔记Day5-前向分步算法
Datawhale-集成学习-学习笔记Day5-前向分步算法1. 加法模型与前向分步算法2. 提升树3. 梯度提升树1. 加法模型与前向分步算法我们可以先了解一下什么是加法模型。加法模型的通式为:f(x)=∑m=1Mβmb(x;γm)f(x)=\sum_{m=1}^{M} \beta_{m} b\left(x ; \gamma_{m}\right)f(x)=m=1∑Mβmb(x;γm)其中,b(x;γm)b\left(x ; \gamma_{m}\right)b(x;γm)为即基本分类器
2021-04-23 16:46:52 135
原创 Datawhale-Docker学习笔记-0005-Docker Compose
Datawhale-Docker学习笔记-0005-Docker Compose1. 什么是Docker compose2. Docker compose的安装3. Compose文件4. Compose指令1. 什么是Docker compose很多时候,当我们想完成一个任务时,一个容器往往是无法完成的。例如,我们想要做一个Web服务器时,不仅仅需要服务器的后端,还需要数据库容器和负载均衡容器等等。只有将上述的服务组织在一起,才是一个可用的应用。而Docker compose就是完成这样的工作。Do
2021-04-21 22:06:16 114
原创 Datawhale-集成学习-学习笔记Day4-Adaboost
Datawhale-集成学习-学习笔记Day4-Adaboost1. 什么是boosting,与bagging的区别是什么2. Adaboost1. 什么是boosting,与bagging的区别是什么在集成学习中,主要的分支就只有两块。其中一个是bagging算法,另外一个是boosting算法。在bagging的学习中,我们可以得知bagging主要是针对数据集进行操作,进行随机的采样。同时我们也论证过,bagging只影响了结果的方差,通过减小方差来得出更好的结果。但是,bagging并没有影响的
2021-04-20 20:24:08 176
原创 Datawhale-Docker学习笔记-0004-Docker网络
Datawhale-Docker学习笔记-0004-Docker网络1. Docker网络1.1 CNM1.2 Libnetwork1.3 驱动2. 单机桥接网络3. Host、None、container模式4. 端口映射1. Docker网络Docker在容器内部运行着大量需要依赖不同网络的应用,这也就意味着Docker需要非常强大的网络功能。当然,Docker对于容器之间、容器与外部网络的连接均有相应的解决方案。我们可以从顶层设计的角度学习Docker的网络架构。Docker网络架构主要由3个
2021-04-19 17:38:35 119
原创 Datawhale-集成学习-学习笔记Day3-决策树与随机森林
Datawhale-集成学习-学习笔记Day3-决策树与随机森林1. 决策树2. 特征选择与信息增益2.1 特征选择2.2 信息增益2.3 使用信息增益来进行特征选择3. 与bagging结合的决策树算法——随机森林1. 决策树决策树,一种基本的分类与回归方法。个人认为,决策树更加广泛的应用于分类任务中。顾名思义,决策树是一种树形的模型,它基于特征对实例进行分类。决策树的好处是具有非常高的可读性,我们可以把它当成一些if-then规则的集合。一般来说,决策树的训练包括以下三个步骤:特征的选择决策
2021-04-18 22:53:05 135
原创 Datawhale-集成学习-学习笔记Day2-bagging
Datawhale-集成学习-学习笔记Day2-baggingbagging为什么bagging可以降低方差案例实现bagging与投票法类似,bagging也将所有及模型的结果统一在一起,来当作模型最终的结果。但是bagging在投票法的基础上又更前进了一步,采用了一定的策略来影响基模型的训练,从而进一步降低模型的方差。在投票法中我们说过,我们希望各个模型之间会有较大的差异性,来获取更好的结果。但是在实际操作中,我们使用的模型往往是同质的。所以,在bagging我们使用不同的采样方法来增加模型的差异
2021-04-17 14:49:12 158
原创 Datawhale-Docker学习笔记-0003-数据管理
Datawhale-Docker学习笔记-0003-数据管理1. 什么是数据2. 数据卷3. 数据卷的操作3.1 创建数据卷3.2 查看已经创建的数据卷3.3 启动一个挂载数据卷的容器3.4 删除数据卷文章目录1. 什么是数据2. 数据卷3. 数据卷的操作3.1 创建数据卷3.2 查看已经创建的数据卷3.3 启动一个挂载数据卷的容器3.4 删除数据卷1. 什么是数据数据,按照不同的划分方式会有不同的定义。比如,按照是否为连续信息划分,可以划分为模拟数据和离散数据。但是在Docker的内容中,我们更加关
2021-04-16 22:02:32 99
原创 Datawhale-Docker学习笔记-0002-镜像与容器
镜像与容器镜像什么是镜像镜像的操作镜像的获取列出镜像删除镜像Dockerfile制作镜像容器什么是容器镜像什么是镜像如果大家使用过虚拟机模板,就可以很好的理解Docker的镜像其实和VM的模板很类似。其实镜像并没有那么复杂,我们可以把镜像和容器放在一起理解。容器时一组正在运行的OS和应用的集合,而镜像我们可以理解为容器再某一时刻的快照。就像照片一样,镜像是静止的,而容器是动态的,正在运行的。这就是两者的区别。镜像的操作镜像的获取我们有时如果不想自己配置环境的话,可以直接从Docker Hub上下
2021-04-15 17:30:41 120
原创 Datawhale-集成学习-学习笔记Day1-Voting
集成学习什么是集成学习投票法案例操作sklearn函数介绍实际代码什么是集成学习在传统的机器学习任务中,我们的目的往往是得出一个和实际情况相符的模型。例如,分类任务中,我们想要得出的结果就是可以获取一个无论输入是什么都可以输出正确分类的分类模型。但是事实上,得到这样的模型是非常困难的。通常情况下,我们得到的模型只能是较好的。而集成学习就是组合这些这些较好的模型,以期达到更好的效果。投票法在现实生活中,在很多人意见不统一的时候,我们最常用的方法就是少数服从多数。这就是非常简单的投票法。例如,在一个
2021-04-13 17:21:21 260 1
原创 Datawhale-Docker学习笔记-0001-简介与安装
Datawhale-Docker学习笔记-0001-简介与安装什么是DockerDocker与虚拟机的区别Docker for Windows参考文章什么是Docker在虚拟机的出现以前,无论是Windows还是Linux,都无法保证在一个服务器上安全稳定的同时运行多个应用。直到VMware的出现,才使得开发人员可以在一个服务器上稳定的同时运行多个应用,避免了每添加一个应用就需要重新购买一台服务器的境况。但是,即使是VM这样伟大的技术,也带来了很多的不便。虚拟机依赖器特有的OS,这个OS在运行的时
2021-04-12 20:32:08 141
原创 PATA1015 翻转质数
这一题的题目意思要理解清楚,例如给一个数11,进制为2。那么11是质数,在2进制下,11为1011,反转后为1101,是13,也是质数,所以应该输出Yes.有一个坑,根据定义,1不是质数。#include <cstdio>#include <math.h>int isPrime(int num){ if (num == 1) return 0; for (int i = 2; i < num; i++) { if (num % i == 0) r
2020-05-31 22:03:48 296
原创 PAT A1008 Elevate
题目解读很简单的电梯问题,上一层需要6秒,下一层需要5秒,到一层停留需要5秒。唯一需要注意的就是当目标楼层与当前楼层相同的时候,也需要停留5s,否则会有一些测试点无法通过。#include <cstdio>// 上楼需要5s// 下楼需要4s// 停留6sint main(){ int num; scanf("%d", &num); int * stopFloor = new int[num]; for (int i = 0; i < num; i++)
2020-05-26 15:46:34 159
原创 PAT1007 求最大的子序列
求最大的子序列这里用到了一个比较巧妙的遍历的方法。首先,设置start和end为字符串的两端,还有一个p为0.还有一个当前的sum = 0,和最大的maxSum = -1.因此,对序列进行遍历,将数字加入sum中,如果sum小于0,就说明,当前位置到p的序列和是小于0的,不可能是最大的序列,因此要将p设置为当前位置的下一个。但是,如果求出的sum大于0,我们还不可以更新最大的序列,要与maxSum作比较才可以,如果大于maxSum就更新最大子序列。保证记录的最大子序列一定为最大子序列。#
2020-05-26 11:20:21 627
原创 新手入门机器学习1,监督学习的基本过程
本人新手入门机器学习,目前才刚刚接触,写博客的目的只是为了记录下学习的过程。机器学习包括监督学习,非监督学习,半监督学习,和强化学习。我因为是刚刚接触机器学习,所以学习的是监督学习。监督学习的目的是通过给出的训练集,学习一个模型,从而,在给的训练集外有输入的时候,可以给出一个预测的输出。这样理解的话,监督学习,就很简单了。可以分为两个阶段,首先要学习,通过给出的训练集T,学习一个模型,可...
2018-11-18 12:10:55 888
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人