高斯混合模型(GMM)浅入理解
学习的资料主要是看大佬的一些博客和李航老师的统计学习第九章,感谢!
其中有篇笔记让小匹眼前一亮,这里贴出来:
知乎_戴文亮_高斯混合模型(GMM)
进入正题
目录1.1 概念理解1.2 隐变量1.3 聚类功能
1.1 概念理解
高斯混合模型(GMM),是单一高斯模型的延伸,其概率分布模型为:
P(x∣θ)=∑k=1Kαkϕ(x∣θk)
P(x|\theta) = \sum_{k=1}^K\alpha_k\phi(x|\theta_k)
P(x∣θ)=k=1∑Kαkϕ(x∣θk)
由公式可以看出,高斯