迪杰斯特拉(Dijkstra)算法介绍
迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个结点到其他结点的最短路径。 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。
应用场景-最短路径问题
看一个应用场景和问题:
战争时期,胜利乡有7个村庄(A, B, C, D, E, F, G) ,现在有六个邮差,从G点出发,需要分别把邮件分别送到 A, B, C , D, E, F 六个村庄
各个村庄的距离用边线表示(权) ,比如 A – B 距离 5公里
问:如何计算出G村庄到 其它各个村庄的最短距离?
如果从其它点出发到各个点的最短距离又是多少?
迪杰斯特拉(Dijkstra)算法过程
设置出发顶点为v,顶点集合V{v1,v2,vi…},v到V中各顶点的距离构成距离集合Dis,Dis{d1,d2,di…},Dis集合记录着v到图中各顶点的距离(到自身可以看作0,v到vi距离对应为di)
从Dis中选择值最小的di并移出Dis集合,同时移出V集合中对应的顶点vi,此时的v到vi即为最短路径
更新Dis集合,更新规则为:比较v到V集合中顶点的距离值,与v通过vi到V集合中顶点的距离值,保留值较小的一个(同时也应该更新顶点的前驱节点为vi,表明是通过vi到达的)
重复执行两步骤,直到最短路径顶点为目标顶点即可结束
结合代码的分析过程
这里以C为出发点
我们首先定义一个dis数组
visited 数组记录是否被访问过
第一步 我们将C点到各个的顶点的距离放入到dis数组中 (dis数组始终代表的是以C顶点到各个路径的距离 我们就是修改这个数组)
dis:7 N 0 N 8 N N
我们遍历dis数组 寻找距离c点距离最近的顶点 这时候返回坐标0 也就是我们的A顶点
取出A顶点到各个顶点的距离
A: 0 5 7 N N N 2
此时遍历A的距离数组 我们找出 dis