力扣1895.最大的幻方

力扣1895.最大的幻方

题目解析及思路

题目要求找到最大的正方形矩阵,其中每行每列每条对角线的和都相等

数据范围比较小,矩阵最大50x50,可以考虑暴力

分别求出每行每列的前缀和

  • 求前缀和暴力枚举幻方边长

    • 求行列前缀和

代码

class Solution {
public:
    int largestMagicSquare(vector<vector<int>>& grid) {
        int n = grid.size() , m = grid[0].size();
        vector<vector<int>> rowsum(n,vector<int>(m));
        //行前缀和
        for(int i=0;i<n;i++)
        {
            rowsum[i][0] = grid[i][0];
            for(int j=1;j<m;j++)
                rowsum[i][j] = rowsum[i][j-1] + grid[i][j];
        }

        vector<vector<int>> colsum(n,vector<int>(m));
        //列前缀和
        for(int j=0;j<m;j++)
        {
            colsum[0][j] = grid[0][j];
            for(int i=1;i<n;i++)
                colsum[i][j] = colsum[i-1][j] + grid[i][j];
        }
		//倒序枚举边长
        for(int edge = min(m,n) ; edge>=2;edge--)
        {
            for(int i=0;i <= n - edge;i++)
            {
                for(int j=0;j<=m - edge;j++)
                {
                    //求模板 以第一行的和为例
                    int stdsum = rowsum[i][j + edge - 1] - (j ? rowsum[i][j-1] : 0);
                    bool check = true;

                    //枚举行
                    for(int ii = i + 1;ii < i + edge; ii ++)
                    {
                        if(rowsum[ii][j + edge - 1] - (j ? rowsum[ii][j - 1] : 0 ) != stdsum)
                        {
                            check = false;
                            break;
                        }

                        if(!check) continue;

                        //枚举列
                        for(int jj=j;jj<edge + j;jj++)
                        {
                            if(colsum[i + edge - 1][jj] - (i ? colsum[i-1][jj] :0) != stdsum)
                            {
                                check = false;
                                break;
                            }
                        }

                        if(!check) continue;

                        int d1 = 0,d2 = 0;
                        //枚举对角线每一个元素
                        for(int k=0;k<edge;k++)
                        {
                            d1 += grid[i+k][j+k];
                            d2 += grid[i+k][j+edge-1-k];
                        }
                        if(d1 == stdsum && d2 == stdsum)
                            return edge;
                    }
                }
            }
        }
        return 1;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阳光男孩01

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值