敏感度分析在R语言中的应用

90 篇文章 ¥59.90 ¥99.00

敏感度分析在R语言中的应用

敏感度分析是指在模型中改变输入参数,观察输出结果的变化,从而评估参数对结果的影响程度。在数据分析和建模领域,敏感度分析常用于确定重要因素、评估风险以及优化模型性能。R语言作为一种功能强大的统计分析和数据可视化工具,提供了许多库和函数供用户进行敏感度分析。本文将介绍几种常用的敏感度分析方法,并给出相应的源代码实现。

一、单因素敏感度分析

单因素敏感度分析是指只改变一个输入参数,其余参数保持不变,观察输出结果的变化情况。下面以敏感度分析经典案例之一的蒙特卡洛模拟为例,演示在R中如何进行单因素敏感度分析。

# 蒙特卡洛模拟函数
monte_carlo <- function(mu, sigma, n) {
  rnorm(n, mean = mu, sd = sigma)
}

# 设置参数值
mu <- 10
sigma <- 2
n <- 1000

# 原始输出结果
set.seed(123)
original_result <- monte_carlo(mu, sigma, n)
original_mean <- mean(original_result)
original_mean

# 改变mu参数值
new_mu <- 12
set.seed(123)
new_result <- monte_carlo(new_mu, sigma, n)
new_mean <- mean(new_result)
new_mean

# 输出敏
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值