敏感度分析在R语言中的应用
敏感度分析是指在模型中改变输入参数,观察输出结果的变化,从而评估参数对结果的影响程度。在数据分析和建模领域,敏感度分析常用于确定重要因素、评估风险以及优化模型性能。R语言作为一种功能强大的统计分析和数据可视化工具,提供了许多库和函数供用户进行敏感度分析。本文将介绍几种常用的敏感度分析方法,并给出相应的源代码实现。
一、单因素敏感度分析
单因素敏感度分析是指只改变一个输入参数,其余参数保持不变,观察输出结果的变化情况。下面以敏感度分析经典案例之一的蒙特卡洛模拟为例,演示在R中如何进行单因素敏感度分析。
# 蒙特卡洛模拟函数
monte_carlo <- function(mu, sigma, n) {
rnorm(n, mean = mu, sd = sigma)
}
# 设置参数值
mu <- 10
sigma <- 2
n <- 1000
# 原始输出结果
set.seed(123)
original_result <- monte_carlo(mu, sigma, n)
original_mean <- mean(original_result)
original_mean
# 改变mu参数值
new_mu <- 12
set.seed(123)
new_result <- monte_carlo(new_mu, sigma, n)
new_mean <- mean(new_result)
new_mean
# 输出敏