使用 R 语言进行基于卵巢数据集的生存分析

90 篇文章 ¥59.90 ¥99.00
本文介绍了如何使用R语言进行基于卵巢数据集的生存分析。通过加载'survival'包和'ovarian'数据集,展示了查看数据集结构、绘制Kaplan-Meier生存曲线、进行分组生存分析以及应用log-rank检验评估生存影响的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用 R 语言进行基于卵巢数据集的生存分析

生存分析是一种常用的统计方法,用于研究事件发生时间和影响事件发生的因素。在医学领域,生存分析常用于评估患者的生存时间和预测患者的生存率。本文将介绍如何使用 R 语言进行基于卵巢数据集的生存分析。

首先,我们需要加载所需的 R 包和数据集。这里我们使用 “survival” 包和 “ovarian” 数据集作为示例。

# 加载所需的 R 包
library(survival)

# 加载 ovarian 数据集
data(ovarian)

接下来,我们可以查看数据集的结构和摘要信息。

# 查看数据集结构
str(ovarian)

# 查看数据集摘要信息
summary(ovarian)

数据集中包含了用于卵巢癌患者的生存分析的一些变量。其中,“futime” 表示患者的随访时间,“fustat” 表示患者的随访状态(1 表示死亡,2 表示存活),“age” 表示患者的年龄,“resid.ds” 表示患者的残留疾病。

接下来,我们可以使用 Kaplan-Meier 方法绘制生存曲线。

# 使用 Kaplan-Meier 方法计算生存曲线
fit <- survfit(Surv(futime, fu
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值