工业金属平面材料表面缺陷自动视觉检测的研究进展
近年来,随着工业制造的不断发展,金属平面材料在各个领域中的应用越来越广泛。然而,在生产过程中,金属平面材料表面往往会出现一些缺陷,如划痕、裂纹等,这些缺陷可能会对产品的质量和性能产生不良影响。因此,开发一种高效可靠的自动视觉检测系统成为当前研究的热点之一。
本文将综述工业金属平面材料表面缺陷自动视觉检测的研究进展,并介绍其中常用的一种编程方法。
一、研究进展
-
传统的表面缺陷检测方法
传统的表面缺陷检测方法主要依赖人工目视,这种方法存在着耗时、主观性强和易疲劳等缺点。随着计算机视觉技术的快速发展,自动视觉检测逐渐成为了研究的焦点。 -
基于图像处理的检测方法
基于图像处理的检测方法是目前应用最广泛的一种自动视觉检测方法。该方法通过提取图像中的特征,并应用图像处理算法进行缺陷检测。常用的图像处理算法包括边缘检测、灰度化、二值化等。 -
基于机器学习的检测方法
为了提高检测的准确性和鲁棒性,研究者们开始将机器学习算法应用于表面缺陷检测中。常用的机器学习算法包括支持向量机(Support Vector Machine,SVM)、人工神经网络(Artificial Neural Network,ANN)等。 -
基于深度学习的检测方法
近年来,深度学习技