基于计算机视觉实现铁路接触网杆号识别
随着铁路运输的发展,铁路接触网也逐步成为了铁路建设中非常重要的一部分。在铁路接触网的维护过程中,对杆号的识别是必不可少的。本文将基于计算机视觉技术,实现铁路接触网系统杆号的识别,同时我们也提供了Matlab源码。
首先,我们需要对图像进行预处理,将原始图像转化为灰度图像,并使用高斯滤波器进行平滑处理。然后,我们使用Canny算法检测出图像中存在的边缘,这些边缘将有助于我们进行杆号的定位。
接下来,我们需要通过连通区域分析算法找到所有的杆号区域,并使用形态学操作对其进行进一步处理,包括膨胀和腐蚀操作,以便更好地定位杆号的位置和形状。此步骤完成后,我们将得到杆号区域的二值化图像。
最后,我们使用字符识别算法对杆号进行识别。具体而言,我们使用了基于模板匹配的方法,通过对每个数字进行模板匹配,从而得到最终的识别结果。
以下是完整的Matlab代码实现:
% 读取原始图像
img = imread('original_image.jpg');
% 将图像转化为灰度图像
gray_img = rgb2gray(img);
% 使用高斯滤波器进行平滑处理
gaussian_img = imgaussfilt(gray_img, 2);
% 使用Canny算法检测出图像中存在的边缘
edge_img = edge(gaus