基于计算机视觉实现铁路接触网杆号识别

153 篇文章 ¥59.90 ¥99.00
本文介绍了一种基于计算机视觉的铁路接触网杆号识别方法。通过图像预处理、边缘检测、连通区域分析和形态学操作,定位杆号。接着使用模板匹配的字符识别算法,对杆号进行识别,实现自动化识别。提供的Matlab代码为实现过程提供参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于计算机视觉实现铁路接触网杆号识别

随着铁路运输的发展,铁路接触网也逐步成为了铁路建设中非常重要的一部分。在铁路接触网的维护过程中,对杆号的识别是必不可少的。本文将基于计算机视觉技术,实现铁路接触网系统杆号的识别,同时我们也提供了Matlab源码。

首先,我们需要对图像进行预处理,将原始图像转化为灰度图像,并使用高斯滤波器进行平滑处理。然后,我们使用Canny算法检测出图像中存在的边缘,这些边缘将有助于我们进行杆号的定位。

接下来,我们需要通过连通区域分析算法找到所有的杆号区域,并使用形态学操作对其进行进一步处理,包括膨胀和腐蚀操作,以便更好地定位杆号的位置和形状。此步骤完成后,我们将得到杆号区域的二值化图像。

最后,我们使用字符识别算法对杆号进行识别。具体而言,我们使用了基于模板匹配的方法,通过对每个数字进行模板匹配,从而得到最终的识别结果。

以下是完整的Matlab代码实现:

% 读取原始图像
img = imread('original_image.jpg');

% 将图像转化为灰度图像
gray_img = rgb2gray(img);

% 使用高斯滤波器进行平滑处理
gaussian_img = imgaussfilt(gray_img, 2);

% 使用Canny算法检测出图像中存在的边缘
edge_img = edge(gaus
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值