曼惠特尼U检验与特征筛选在Python中的应用

111 篇文章 ¥59.90 ¥99.00
本文介绍了如何在Python中运用曼惠特尼U检验进行非参数统计,比较两个独立样本的差异,并展示了如何进行特征筛选,以提升机器学习模型的性能。通过实例展示了数据加载、U检验计算及基于p-value的特征选择过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

曼惠特尼U检验与特征筛选在Python中的应用

曼惠特尼U检验(Mann-Whitney U test)是一种非参数统计方法,用于比较两个独立样本的差异。它适用于数据不满足正态分布或方差不齐的情况。特征筛选是机器学习和数据挖掘中的一个重要步骤,旨在选择对目标变量具有显著影响的特征。本文将介绍如何使用Python进行曼惠特尼U检验和特征筛选,并提供相应的源代码。

首先,我们需要导入所需的Python库,包括NumPy、Pandas和SciPy:

import numpy as np
import pandas as pd
from scipy.stats import mannwhitneyu

接下来,我们假设有一个包含两个独立样本的数据集,其中一个样本标记为“Group A”,另一个样本标记为“Group B”。我们的目标是比较这两个样本的某个特征的差异,并

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值