K均值聚类是一种常用的无监督学习算法,用于将数据集划分为具有相似特征的不同群体。本文将详细介绍K均值聚类算法的原理和实现过程,并提供相应的Python代码示例。
- 算法原理
K均值聚类的目标是将数据集划分为K个簇,其中每个簇的数据点都具有相似的特征。算法的过程如下:
- 步骤1:选择初始的K个聚类中心点。可以随机选择数据集中的K个点作为聚类中心,或者使用其他启发式方法选择初始中心点。
- 步骤2:将每个数据点分配给离它最近的聚类中心。使用欧氏距离或其他距离度量方法来计算数据点与聚类中心之间的距离。
- 步骤3:更新每个聚类的中心点,计算每个簇中数据点的平均值,并将该平均值作为新的聚类中心。
- 步骤4:重复步骤2和步骤3,直到聚类中心不再改变或达到最大迭代次数。
K均值聚类算法的核心思想是通过最小化数据点与所属聚类中心之间的距离来优化聚类结果,使得同一簇内的数据点更加相似,不同簇之间的数据点差异更大。
- Python代码实现
下面是使用Python实现K均值聚类算法的示例代码:
import numpy as np