K均值聚类:一种简单而强大的无监督学习算法

本文深入探讨了K均值聚类算法,包括其原理、步骤及Python实现。通过逐步解释聚类过程,展示了如何使用K均值算法将数据集划分为相似特征的群体,并提供了代码示例和应用场景,帮助理解无监督学习在数据结构分析中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

K均值聚类是一种常用的无监督学习算法,用于将数据集划分为具有相似特征的不同群体。本文将详细介绍K均值聚类算法的原理和实现过程,并提供相应的Python代码示例。

  1. 算法原理

K均值聚类的目标是将数据集划分为K个簇,其中每个簇的数据点都具有相似的特征。算法的过程如下:

  • 步骤1:选择初始的K个聚类中心点。可以随机选择数据集中的K个点作为聚类中心,或者使用其他启发式方法选择初始中心点。
  • 步骤2:将每个数据点分配给离它最近的聚类中心。使用欧氏距离或其他距离度量方法来计算数据点与聚类中心之间的距离。
  • 步骤3:更新每个聚类的中心点,计算每个簇中数据点的平均值,并将该平均值作为新的聚类中心。
  • 步骤4:重复步骤2和步骤3,直到聚类中心不再改变或达到最大迭代次数。

K均值聚类算法的核心思想是通过最小化数据点与所属聚类中心之间的距离来优化聚类结果,使得同一簇内的数据点更加相似,不同簇之间的数据点差异更大。

  1. Python代码实现

下面是使用Python实现K均值聚类算法的示例代码:

import numpy as np

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值