特征预处理是机器学习中非常重要的一步,它能够改善特征的表达能力、提高模型的准确性和鲁棒性。在本文中,我们将介绍一些常用的特征预处理方法,并结合Python代码进行实践。
- 缺失值处理
在实际数据中,常常会存在缺失值的情况。缺失值对模型的训练和预测都会产生不良影响,因此需要对其进行处理。常见的缺失值处理方法有删除、插补和替换等。
删除缺失值的方法如下:
import pandas as pd
# 假设df为包含缺失值的数据框
df.dropna(inplace=True)
插补缺失值的方法如下:
import pandas